Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2010 | 12 | 2 | 38-45

Article title

Influence of the coating process parameters on the quality of PUR/PVP hydrogel coatings for PVC medical devices


Title variants

Languages of publication



To decrease friction factor and enhance the biocompatibility of medical devices manufactured from poly(vinyl chloride), PVC, the surface modification with wear resistant polyurethane/polyvinylpyrrolidone (PUR/PVP) hydrogel coating can be applied. In the present work substrates were dip-coated with PVP and PUR solutions and thermally cured. The variable process parameters were: solvent system; concentration of polymers (1, 2 or 3% w/v); coating baths temperature (22, 38 and 55°C); drying temperature (32, 50 and 67°C); length of break between process steps (5, 30 and 90 s); and solutions storage time (up to 72 hrs). The quality of coatings was determined by friction coefficients against porcine aorta, weights of the deposited layer and the swelling capacity. The solvent system and polymers concentration were crucial factors. The increased temperature of coating solutions caused increased deposition but decreased durability. The most lubricious samples were dried in 50°C. Coatings from the solutions prepared 24h prior to use had better properties than those from fresh solutions.









Physical description


1 - 1 - 2010
9 - 7 - 2010


  • The Faculty of Chemical and Process Engineering, Warsaw University of Technology, ul. Warynskiego 1, 00-645 Warszawa, Poland
  • The Faculty of Chemical and Process Engineering, Warsaw University of Technology, ul. Warynskiego 1, 00-645 Warszawa, Poland
  • The Faculty of Chemical and Process Engineering, Warsaw University of Technology, ul. Warynskiego 1, 00-645 Warszawa, Poland


  • Geever, L. M., Cooney, C. C., Lyons, J. G., Kennedy, J. E., Nugent, M. J. D., Devery, S. & Higginbotham, C. L. (2008). Characterisation and controlled drug release from novel drug-loaded hydrogels. Eur. J. Pharm. Biopharm. 69(3), 1147-1159. DOI: 10.1016/j.ejpb.2007.12.021.[Crossref][WoS]
  • Peppas, N. A., Bures, P., Leobandung, W. & Ichikawa, H. (2000). Hydrogels in pharmaceutical formulation. Eur. J. Pharm. Biopharm. 50(1), 27-46. DOI: 10.1016/S0939-6411(00)00090-4.[Crossref]
  • Swami, S. N. (2004). Radiation synthesis of polymeric hydrogels for swelling-controlled drug release studies. Doctoral dissertation, University of Western Sydney, School of Science, Food and Horticulture, New South Wales, Australia.
  • Gupta, P., Vermani, K. & Garg, S. (2002). Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today 7(10), 569-579. DOI: 10.1016/S1359-6446(02)02255-9.[Crossref]
  • Karadag, E., Üzüm, Ö. B. & Saraydin, D. (2005). Water uptake in chemically crosslinked poly(acrylamide-co-crotonic acid) hydrogels. Mater. Des. 26(4), 265-270. DOI: 10.1016/j.materdes.2004.07.014.[Crossref]
  • Wichterle, O. & Lim, D. (1960). Hydrophilic gels for biological use. Nature 185, 117-118. DOI: 10.1038/185117a0.[Crossref]
  • Lim, F. & Sun, A. M. (1980). Microencapsulated islets as bioartificial endocrine pancreas. Science 210, 908-910. DOI: 10.1126/science.6776628.[Crossref]
  • Gorman, S. P., Tunney, M. M., Keane, P. F., Van Bladel, K. & Bley, B. (1998). Characterization and assessment of a novel poly(ethylene oxide)/polyurethane composite hydrogel (Aquavene) as a ureteral stent biomaterial. J. Biomed. Mater. Res. 39(4), 642-649. DOI: 10.1002/(SICI)1097-4636(19980315)39:4<642::AID-JBM20>3.0.CO;2-7.[Crossref]
  • Tunney, M. M. & Gorman, S. P. (2002). Evaluation of a poly(vinyl pyrollidone)-coated biomaterial for urological use. Biomaterials 23(23), 4601-4608. DOI: 10.1016/S0142-9612(02)00206-5.[PubMed][Crossref]
  • Yang, S. H., Lee, Y. S., Lin, F. H., Yang, J. M. & Chen, K. S. (2007). Chitosan/poly(vinyl alcohol) blending hydrogel coating improves the surface characteristics of segmented polyurethane urethral catheters. J. Biomed. Mater. Res. B Appl. Biomater. 83(2), 304-313. DOI: 10.1002/jbm.b.30796[Crossref][WoS]
  • LaPorte, R. J. (1997). Hydrophilic polymer coatings for medical devices: structure/ properties, development, manufacture, and applications. Boca Raton, USA: CRC Press.
  • Micklus, M. J & Ou-Yang, D. T. (1978). U. S. Patent No. 4,100,309. Washington, D. C.: U. S. Patent and Trademark Office.
  • Kaźmierska, K., Szwast, M. & Ciach, T. (2008). Determination of urethral catheter surface lubricity. J. Mater. Sci. Mater. Med. 19(6), 2301-2306. DOI: 10.1007/s10856-007-3339-4.[Crossref]
  • Kaźmierska, K., A., Kuc, K. & Ciach, T. (2008). Polyvi-nylpyrrolidone-polyurethane interpolymer hydrogel coating as a local drug delivery system. Acta Pol. Pharm. 65(6), 763-766. Retrieved January 28, 2010, from http://www.ptfarm.pl/ pub/File/acta_pol_2008/6_2008/763-766.pdf.
  • D'Errico, G., De Lellis, M., Mangiapia, G., Tedeschi, A., Ortona, O., Fusco, S., Borzacchiello, A. & Ambrosio, L. (2008). Structural and mechanical properties of UV-photo-cross-linked poly(N-vinyl-2-pyrrolidone) hydrogels. Biomacromolecules 9(1), 231-240. DOI: 10.1021/bm7008137.[PubMed][Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.