Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2010 | 12 | 2 | 18-28

Article title

Parametric studies and simulation of PSA process for oxygen production from air


Title variants

Languages of publication



A numerical simulation and parametric studies for the separation of air using 5A zeolite for the production of oxygen are presented for a basic two bed pressure swing adsorption (PSA) process. The simulation is based on an in-house program ‘PSASOL’ developed in MATLABR. The transient process of PSA has been described by a set of partial differential equations, which were solved using a finite difference method. Simulation results have been validated with the experimental data from literature.Based on the simulation results, an optimal set of operational parameter values has been obtained for the PSA bed. The values of the optimal parameters, viz. adsorption pressure, cycle time, feed rate, and product rate have been found to be 2.5 atm, 150 s, 15 cm3/s, and 2.55 cm3/s, respectively. For the optimal conditions, purity of 95.45% and recovery of 77.3% have been achieved. It has also been found that a longer tubular unit with the length to diameter (L/D) ratio of 10.5 is advantageous. The estimated pressure drop across the bed has been found to be negligible. Power consumption and productivity have also been computed.









Physical description


1 - 1 - 2010
9 - 7 - 2010


  • Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur-302 017, India
  • Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur-302 017, India
  • Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur-302 017, India
  • Department of Chemical Engineering, Indian Institute of Technology, Roorkee-247 667, India
  • Department of Chemical Engineering, Indian Institute of Technology, Roorkee-247 667, India


  • Shuai, X., Cheng, S. & Meisen, A. (1996). Simulation of pressure swing adsorption modules having laminated structure. Microporous Materials 5(6), 347-355. DOI: 10.1016/ 0927-6513(95)00070-4.[Crossref]
  • Santos, J. C., Cruz, P., Regala, T., Magalhaes, F. D. & Mendes, A. (2007). High-purity oxygen production by pressure swing adsorption. Ind. Eng. Chem. Res 46(2), 591-599. DOI: 10.1021/ie060400g.[WoS][Crossref]
  • Lee, S. J., Jung, J. H., Moon, J. H., Jee, J. G. & Lee, C. H. (2007). Parametric Study of the Three-Bed Pressure-Vacuum Swing Adsorption Process for High Purity O2 Generation from Ambient Air. Industrial and Engineering Chemistry Research 46(11), 3720-3728. DOI: 10.1021/ie0610871.[Crossref][WoS]
  • Yang, R. T. (1999). Gas separation by adsorption processes. London: Imperial College Press.
  • Jee, J. G., Lee, S. J., Kim, M. B. & Lee, C. H. (2005). Three-bed PVSA process for high-purity O2 generation from ambient air. AIChE Journal 51(11), 2988-2999. DOI: 10.1002/ aic.10548[Crossref]
  • Sircar, S. (2002). Pressure swing adsorption. Ind. Eng. Chem. Res 41(6), 1389-1392. DOI: 10.1021/ie0109758.[Crossref]
  • Ruthven, D. M. & Farooq, S. (1990). Air separation by pressure swing adsorption. Gas Separation & Purification 4, 141-148. DOI: 10.1016/0950-4214(90)80016-E.[Crossref]
  • Arvind, R., Farooq, S. & Ruthven, D. M. (2002). Analysis of a piston PSA process for air separation. Chemical Engineering Science 57(3), 419-433. DOI: 10.1016/S0009-2509(01)00374-8.[Crossref]
  • Jee, J. G., Lee, S. J. & Lee, C. H. (2004). Comparison of the adsorption dynamics of air on zeolite 5A and carbon molecular sieve beds. Korean Journal of Chemical Engineering 21(6), 1183-1192. DOI: 10.1007/BF02719492.[Crossref]
  • Todd, R. S. & Webley, P. A. (2006). Mass-transfer models for rapid pressure swing adsorption simulation. AIChE Journal 52(9), 3126-3145. DOI: 10.1002/aic.10948.[Crossref]
  • Ahari, J. S., Pakseresht, S., Mahdyarfar, M., Shokri, S., Zamani, Y., pour, A. N. & Naderi, F. (2006). Predictive Dynamic Model of Air Separation by Pressure Swing Adsorption. Chemical Engineering & Technology 29(1), 50-58. DOI: 10.1002/ceat.200500226.[Crossref]
  • Farooq, S., Ruthven, D. M. & Boniface, H. A. (1989). Numerical simulation of a pressure swing adsorption oxygen unit. Chemical Engineering Science 44(12), 2809-2816. DOI: 10.1016/0009-2509(89)85090-0.[Crossref]
  • Hassan, M. M., Ruthven, D. M. & Raghavan, N. S. (1986). Air separation by pressure swing adsorption on a carbon molecular sieve. Chemical Engineering Science 41(5), 1333-1343. DOI: 10.1016/0009-2509(86)87106-8.[Crossref]
  • Cruz, P., Magalhaes, F. D. & Mendes, A. (2005). On the optimization of cyclic adsorption separation processes. AIChE Journal 51(5), 1377-1395. DOI: 10.1002/aic.10400.[Crossref]
  • Nilchan, S. & Pantelides, C. C. (1998). On the optimisation of periodic adsorption processes. Adsorption 4(2), 113-147. DOI: 10.1023/A:1008823102106.[Crossref]
  • Biegler, L. T., Jiang, L. & Fox, V. G. (2005). Recent advances in simulation and optimal design of pressure swing adsorption systems. Separation & Purification Reviews 33(1), 1-39. DOI: 10.1081/SPM-120039562.[Crossref]
  • Huang, Q., Malekian, A. & Ei, M. (2008). Optimization of PSA process for producing enriched hydrogen from plasma reactor gas. Separation and Purification Technology 62(1), 22-31. DOI: 10.1016/j.seppur.2007.12.017.[Crossref][WoS]
  • Nikolic, D., Kikkinides, E. S. & Georgiadis, M. C. (2009). Optimization of Multibed Pressure Swing Adsorption Processes. Ind. Eng. Chem. Res 48(11), 5388-5398. DOI: 10.1021/ ie801357a.[WoS][Crossref]
  • Shampine, L. F. & Reichelt, M. W. (1997). The MATLAB ODE suite. SIAM Journal on Scientific Computing, 18 (1), 1-22. DOI:
  • Shampine, L. F., Gladwell, I. & Thompson, S. (2003). Solving ODEs with MATLAB, Cambridge University Press, Cambridge, UK.
  • Ruthven, D. M., Farooq, S. & Knaebel, K. S. (1994). Pressure swing adsorption. New York, USA: VCH publishers.
  • Tien, C. (1994). Adsorption calculations and modeling. Newton, USA: Butterworth-Heinemann.
  • Gomes, V. G. & Yee, K. W. K. (2002). Pressure swing adsorption for carbon dioxide sequestration from exhaust gases. Separation and purification technology 28(2), 161-171. DOI: 10.1016/S1383-5866(02)00064-3.[Crossref][WoS]
  • Agarwal, A., Biegler, L. T. & Zitney, S. E. (2009). Simulation and Optimization of Pressure Swing Adsorption Systems Using Reduced-Order Modeling. Industrial & Engineering Chemistry Research 48(5), 2327-2343. DOI: 10.1021/ ie071416p.[Crossref][WoS]
  • Jiang, L., Biegler, L. T. & Fox, V. G. (2005). Design and optimization of pressure swing adsorption systems with parallel implementation. Computers and Chemical Engineering 29(2), 393-399. DOI: 10.1016/j.compchemeng.2004.08.014.[Crossref]
  • Jain, S., Moharir, A. S., Li, P. & Wozny, G. (2003). Heuristic design of pressure swing adsorption: a preliminary study. Separation and Purification Technology 33 (1), 25-43. DOI: 10.1016/S1383-5866(02)00208-3.[Crossref]
  • Rota, R. & Wankat, P. C. (1990). Intensification of pressure swing adsorption processes. AIChE Journal 36 (9), 1299-1312. DOI: 10.1002/aic.690360903.[WoS][Crossref]
  • Takamura, Y., Narita, S., Aoki, J., Hironaka, S. & Uchida, S. (2001). Evaluation of dual-bed pressure swing adsorption for CO2 recovery from boiler exhaust gas. Separation and purification Technology 24 (3), 519-528. DOI: 10.1016/ S1383-5866(01)00151-4.[WoS]
  • Mendes, A. M. M., Costa, C. A. V. & Rodrigues, A. E. (2001). PSA simulation using particle complex models. Separation and Purification Technology 24 (1-2), 1-11. DOI: 10.1016/ S1383-5866(00)00191-X.[Crossref]
  • Kearns, D. T. & Webley, P. A. (2006). Modelling and evaluation of dual reflux pressure swing adsorption cycles: Part II. Productivity and energy consumption. Chemical Engineering Science 61 (22), 7234-7239. DOI:10.1016/ j.ces.2006.07.043.[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.