Preferences help
enabled [disable] Abstract
Number of results
2010 | 12 | 1 | 38-43
Article title

Kinetics of nanocrystalline iron nitriding

Title variants
Languages of publication
Nitriding of nanocrystalline iron was studied under the atmosphere of pure ammonia and in the mixtures of ammonia - hydrogen - nitrogen at temperatures between 350°C and 500°C using thermogravimetry and x-ray diffraction. Three stages of nitriding were observed and have been ascribed to the following schematic reactions: (1) α-Fe → γ'-Fe4N, (2) γ'- Fe4N → ε - Fe3N and (3) ε - Fe3N → ε - Fe2N. The products of these reactions appeared in the nitrided nanocrystalline iron not sequentially but co-existed at certain reaction ranges. The dependence of a reaction rate for each nitriding stage on partial pressure of ammonia is linear. Moreover, a minimal ammonia partial pressure is required to initiate the nitriding at each stage.

Physical description
1 - 1 - 2010
8 - 4 - 2010
  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, ul. Pułaskiego 10,70-322 Szczecin, Poland
  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, ul. Pułaskiego 10,70-322 Szczecin, Poland
  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, ul. Pułaskiego 10,70-322 Szczecin, Poland
  • VDI (1990). VDI - Lexikon Werkstofftechnik. Dusseldorf: VDI-Verlag.
  • Bell, T. (1977). Source Book on Nitriding (pp. 266 - 278). Metals Park: American Society of Metals.
  • Mongis, J., Peyre, J. P., & Tournier, C. (1984). Nitriding of microalloyed steels. Heat Treatment of Metals. 11(3), 71 - 75.
  • (2006). Nanomaterials Handbook. Boca Raton: CRC/Taylor & Francis.
  • Gu, J. F., Bei, D. H., Pan, J. S., Lu, J., & Lu, K. (2002). Improved nitrogen transport in surface nanocrystallized lowcarbon steels during gaseous nitridation. Materials Letters. 55, 340 - 343.
  • Tong, W. P., Tao, N. R., Wang, Z. B., Zhang, H. W., Lu, J., & Lu, K. (2004). The formation of ε-Fe3-2 N phase in a nanocrystalline Fe. Scripta Materialia. 50, 647-650.
  • Tong, W. P., Liu, C. Z., Wang, W., Tao, N. R., Wang, Z. B., Zuo, L., & He, J. C. (2007). Gaseous nitriding of iron with a nanostructured surface layer. Scripta Materialia. 57, 533 - 536.[WoS]
  • Schaaf, P. (2002). Laser nitriding of metals. Prog. Mater. Sci. 47, 1 - 161.[Crossref]
  • Nishimaki, K., Ohmae, S., Yamamoto, T. A., & Katsura, M. (1999). Formation of iron-nitrides by the reaction of iron nanoparticles with a stream of ammonia. Nanostructured Materials. 12, 527 - 530.[Crossref]
  • Inia, D. K., Vredenberg, A. M., Habraken, F. H. P. M., & Boerma, D. O. (1999). Nitrogen uptake and rate-limiting step in low-temperature nitriding of iron. Journal of Applied Physics. 86(2), 810 - 816.[Crossref]
  • Wu, X. L., Zhong, W., Tang, N. J., Jiang, H. Y., Liu, W., & Du, Y. W. (2004). Magnetic properties and thermal stability of nanocrystalline ε-Fe3N prepared by gas reduction-nitriding method. J. Alloy. Comp. 385, 294 - 297. DOI: 10.1016/j.jallcom.2004.04.127.[Crossref]
  • Jiraskova, Y., Havlicek, S., Schneeweiss, O., Perina, V., & Blawert, C. (2001). Characterization of iron nitrides prepared by spark erosion, plasma nitriding, and plasma immersion ion implantation. Journal of Magnetism and Magnetic Materials. 234, 477 - 488.
  • Lin, C.-K., Chen, G.-S., Chen, J.-S., Chin, T.-S., & Lee, P.-Y. (2001). Characterization of iron nitride powders formed by mechanical alloying and atmospheric heat treatment techniques. J. Chin. Inst. Eng. 24(6), 755 - 762.
  • Schaaf, P. (1998). Iron nitrides and laser nitriding of steel. Hyperfine Interactions. 111, 113 - 119.
  • Shinno, H., Uehara, M., & Saito, K. (1997). Synthesis of α"-Fe16 N2 iron nitride by means of nitrogen-ion implantation into iron thin films. J. Mater. Sci. 32, 2255 - 2261.[Crossref]
  • Kunze, J. (1990). Nitrogen and carbon in iron and steel thermodynamics. Berlin: Akademie-Verlag.
  • Lakhtin, J. M., & Kogan, J. D. (1976). Azotirovanie stali. Moskva: Masinostroenie.
  • Lehrer, E. (1930). The equilibrium, iron - hydrogen - ammonia. Z. Electrochem. 36, 383 - 392.
  • Wohlschloegel, M., Welzel, U., & Mittemeijer, E. J. (2007). Unexpected formation of ε iron nitride by gas nitriding of nanocrystalline α-Fe films. Applied Physics Letters. 91, 141901.[WoS]
  • Arabczyk, W., & Wróbel, R. (2003). Study of the Kinetics of Nitriding of Nanocrystalline Iron using TG and XRD methods. Sol. State Phenom. 94, 185 - 188.
  • Cao, M., Wang, R., Fang, X., Cui, Z., Chang, T., & Yang, H. (2001). Preparing γ'-Fe4N ultrafine powder by twice-nitriding method. Powder Technology. 115, 96-98.
  • Arabczyk, W., & Jakrzewska, M. (1995). The nitriding kinetics of fine-crystalline α-Fe. In: Advanced materials and technologies: 14th International Scientific Conference (pp. 21 - 24). Gliwice: Committee of Metallurgy of the Polish Academy of Science.
  • Arabczyk, W., & Wróbel, R. (2003). Study of the kinetics of reduction of the nanocrystalline iron nitrides. Annals of Polish Chemical Society. 3(3), 1065 - 1069.
  • Opalińska, A., Leonelli, C., Łojkowski, W., Pielaszek, R., Grzanka, E., Chudoba, T., Matysiak, H., Wejrzanowski, T., & Kurzydłowski, K. J. (2006). Effect of Pressure on Synthesis of Pr-Doped Zirconia Powders Produced by Microwave-Driven Hydrothermal Reaction. J. Nanomater. 2006(Article ID 98769), 1 - 8. DOI: 10.1155/JNM/2006/98769.
  • Schloegl, R. (1991). In: J. R. Jennings, Catalytic Ammonia Synthesis (p. 19). New York: Plenum Press.
  • Du Marchie van Voorthuysen, E. H., Chechenin, N. C., & Boerma, D. O. (2002). Low-Temperature Extention of the Lehrer Diagram and the Iron-Nitrogen Phase Diagram. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 33A, 2593 - 2598.
  • Arabczyk, W., & Zamłynny, J. (1999). Study of the ammonia decomposition over iron catalysts. Catal. Lett. 60(3), 167 - 171.[WoS][Crossref]
  • Love, K. S., & Emmett, P. H. (1941). The Catalytic Decomposition of Ammonia over Iron Synthetic Ammonia Catalysts. J. Amer. Chem. Soc. 63, 3297 - 3308.
  • Logan, S. R., Moss, R. L., & Kemball, C. (1958). The Catalytic Decomposition of Ammonia on Evaporated Iron Films. Trans. Farad. Soc. 54, 922 - 930.
  • Pulkkinen, R. E. E. (1982). Kinetics of nitridation of α-irons containing chromium, molybdenum, and silicon in ammonia - hydrogen mixtures. Metal Science. 16, 37 - 40.
  • Rosendaal, H. C. F., Colijn, P. F., & Scheaf, P. J. (1983). The developement of nitrogen concentration profiles of nitriding iron. Metal. Trans. 14, 395 - 399.
  • Keddam, M., Djeghlal, M. E., & Barrallier, L. (2005). A simple diffusion model for the growth kinetics of γ' iron nitride on the pure iron substrate. Appl. Surf. Sci. 242, 369 - 374. DOI: 10.1016/j.apcusc.2004.09.003.[Crossref][WoS]
  • Keddam, M., Djeghlal, M. E., & Barrallier, L. (2004). A diffusion model for simulation of bilayer growth (ε/γ') of nitrided pure iron. Mater. Sci. Eng. A. 378, 475-478. DOI: 10.1016/j.msea.2003.11.066.[Crossref]
  • Grabke, H. J. (1968). Reaction of ammonia, nitrogen, and hydrogen on the surface of iron. II. Kinetics of iron nitridation with nitrogen and nitrogen desorption. Ber. Bunsenges. Phys. Chem. 4, 533 - 543.
  • Grabke, H. J. (1973). Kinetics of nitriding iron as a function of the oxygen activity of the gas. Archiv. Eisenhut. 44, 603 - 608.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.