Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2010 | 12 | 1 | 35-37

Article title

The effect of cathode materials on the electrochemical reduction of nitric acid

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Electrochemical or chemical reduction of nitric acid is a well studied area in literature due to the importance of the products formed. The present work focuses on the effect of conventional cathode materials including PbO2, amalgamated Cu, graphite, Pb, Pt and a modified electrode material Ti/TiO2 on the reduction of nitric acid. Ammonia and hydroxylamine are the main products which are estimated by conventional titration methods. Other conditions being similar, the product distribution varies quite drastically as a function of the electrode material and Ti/TiO2 is found to favor a higher ratio of hydroxylamine to ammonia formation compared to other electrodes. The conditions have also been optimized based on the maximum yield of the product.

Publisher

Year

Volume

12

Issue

1

Pages

35-37

Physical description

Dates

published
1 - 1 - 2010
online
8 - 4 - 2010

Contributors

author
  • Central Electrochemical Research Institute, Karaikudi 630006, Tamilnadu, India

References

  • Encyclopedia of Electrochemistry (2006) Vol. 7a, Inorganic chemistry, Wiley-VCH Verlag GmbH & Co, Weinheim, ISBN: 978-3-527-30399-1.
  • Tafel, J., Boerner, K. & Reindl, L. (1902), Cathodic Polarisation In Diluted Sulphuric Acid, Z. Anorg. Allgem. Chern. 31: 289 - 325.
  • Mellor, J. W. (1939), Mellor's Modern Inorganic chemistry research, Longmans Green, London.
  • Glasstone, S. & Hickling, A. (1936) Electrolytic Oxidation and Reduction: Inorganic and Organic, Van Nostrand, New York.
  • Dotson, R. L. & Hernandez, D. Y., US Patent 4,849,073 (1989).
  • Buchholz, J.R & Powell, R. E. (1963), The Decomposition of Hyponitrous Acid. I. The Non-chain Reaction, J. Am. Chem. Soc., 85 (5): 509 - 511, DOI: 10.1021/ja00888a004[Crossref]
  • Khomutov, N. E. & Stamkulov, U. S. (1971), Nitrate reduction at various metal electrodes, Sov. Electrochem. 7: 312 - 316.
  • Shah, H. C. (1982) Fundamental and applied electrochemistry, Society for Advancement of Electrochemical Science and Technology, Bombay.
  • Udupa, H. V. K. & Narasimham, K. C., (1960), Industrial Application Of Lead Dioxide Electrodes, J Indian Chem Eng, 2: 66.
  • Vasudevan, D. & Anantharaman, P. N. (1996), Indirect reduction of o- and m-nitrobenzoic acids at a Ti / ceramic TiO2 cathode, J Appl Electrochem, 26:767 - 769, DOI 10.1007/BF00241519.[Crossref]
  • Vasudevan, D. (1995), Reduction of maleic acid at a Ti/ceramic TiO2 cathode, J Appl Electrochem, 25:176 - 178, DOI 10.1007/BF00248176.[Crossref]
  • Vasudevan, D. & Kennady, C. J. (2008), Electroreduction of carbonyl compounds at a Ti/ceramic TiO2 cathode, J. Appl. Electrochem. 38:403 - 408, DOI: 10.1007/s10800-007-9452-8.[Crossref]
  • Beck, F. & Gabriel, W. (1985), Heterogeneous Redox Catalysis on Ti/TiO2 Cathodes - Reduction of Nitrobenzene, Angew Chem. Int. Ed., 24: 771 / 772, DOI: 10.1002/anie.198507711.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10026-010-0007-0
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.