Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 11 | 4 | 38-45

Article title

Application of central composite design for the optimization of photo-destruction of a textile dye using UV/S2O82- process

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
The photooxidative destruction of C. I. Basic Red 46 (BR46) by UV/S2O82- process is presented. Central Composite Design (CCD) was employed to optimize the effects of operational parameters on the photooxidative destruction efficiency. The variables investigated were the initial dye and S2O82- concentrations, reaction time and distance of the solution from UV lamp. The predicted values of the photodestruction efficiency were found to be in good agreement with the experimental values (R2 = 0.9810, Adjusted R2 = 0.9643). The results of the optimization predicted by the model showed that the maximum decolorization efficiency (>98%) was achieved at the optimum conditions of the reaction time 10 min, initial dye concentration 10 mg/l, initial peroxydisulfate concentration 1.5 mmol/l and distance of UV lamp from the solution 6 cm. The figure-of-merit electrical energy per order (EEo) was employed to estimate the electrical energy consumption and related treatment costs.

Publisher

Year

Volume

11

Issue

4

Pages

38-45

Physical description

Dates

published
1 - 1 - 2009
online
8 - 1 - 2010

Contributors

author
  • Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran

References

  • Rauf, M. A. & Ashraf S. (2009). Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 151, 10-18. DOI: 10.1016/j.cej.2009.02.026.[Crossref][WoS]
  • Khataee, A. R., Vatanpour, V. & Amani, A. (2009). Decolorization of C. I. Acid Blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: A comparative study. J. Hazard. Mater. 161, 1225-1233. DOI: 10.1016/j.jhazmat.2008.04.075.[WoS][Crossref]
  • Konstantinou, I. K. & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Appl. Catal. B: Environ. 49, 1-14. DOI: 10.1016/j.apcatb.2003.11.010.[Crossref]
  • Liu, Z., Kanjo, Y. & Mizutani S. (2009). Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment-physical means, biodegradation, and chemical advanced oxidation: A review. Sci. Total Environ. 407, 731-748. DOI: 10.1016/j.scitotenv.2008.08.039.[WoS][Crossref]
  • Brodzik, K., Walendziewski, J. & Stolarsk M. (2007). Photodegradation of organic compounds in water. Pol. J. Chem. Technol. 9, 130-133. DOI: 10.2478/v10026-007-0072-1.[Crossref]
  • Morawski, A. W., Janus, M., Tryba, B., Toyoda, M., Tsumura, T. & Inagaki, M. (2009). Carbon modified TiO2 photocatalysts for water purification. Pol. J. Chem. Technol. 11, 46-50. DOI: 10.2478/v10026-009-0023-0.[WoS][Crossref]
  • Kurechi, T., Aizawa M. & Kunugi A. (1983). Studies on the antioxidants XVIII: Oxidation product of tertiary butyl hydroquinone (TBHQ) (I). J. Am. Oil Chem. Soc. 60, 1878-1882. DOI: 10.1007/BF02901542.[Crossref]
  • Hepel, M. & Luo, J. (2001). Photoelectrochemical mineralization of textile diazo dye pollutants using nanocrystalline WO3 electrodes. Electrochimica Acta 47, 729-740. DOI: 10.1016/S0013-4686(01)00753-8.[Crossref]
  • Lau, T. K., Chu, W. & Graham, N. J. D. (2007). The aqueous degradation of butylated hydroxyanisole by UV/S2O82-: study of reaction mechanisms via dimerization and mineralization, Environ. Sci. Technol. 41, 613-619. DOI: 10.1021/es061395a.[PubMed][WoS][Crossref]
  • House, D. A. (1962). Kinetics and mechanism of oxidations by peroxydisulfate, Chem. Rev. 62, 185-203. DOI: 10.1021/cr60217a001.[Crossref]
  • Gara, P. M. D., Bosio, G. N., Gonzalez, M. C. & Mártire, D. O. (2007). Kinetics of the sulfate radical-mediated photooxidation of humic substances, Int. J. Chem. Kinet. 40, 19-24. DOI: 10.1002/kin.20287.[Crossref]
  • Salari, D., Niaei, A., Aber, S. & Rasoulifard, M. H. (2009). The photooxidative destruction of C. I. Basic Yellow 2 using UV/S2O82- process in a rectangular continuous photoreactor, J. Hazard. Mater. 166, 61-66. DOI: 10.1016/j.jhazmat.2008.11.039.[Crossref][WoS]
  • Roig, B., Gonzalez, C. & Thomas, O. (1999). Measurement of dissolved total nitrogen in wastewater by UV photooxidation with peroxodisulphate, Anal. Chim. Acta 389, 267-274. DOI: 10.1016/S0003-2670(99)00212-3.[Crossref]
  • Box, G. E. P. & Wilson, K. B. (1951). On the experimental attainment of optimum conditions, J. R. Stat. Soc., Ser. B Stat. Methodol. 13, 1-45. DOI:
  • Box, G. E. P. & Hunter, W. G. (1961). The 2k-p fractional factorial designs, J. Technometrics 3, 311-458. DOI: 10.2307/1271430.[Crossref]
  • Obeng, D. P. Morrell, S. & Napier, T. J. N. (2005). Application of central composite rotatable design to modeling the effect of some operating variables on the performance of the three-product cyclone, Int. J. Miner. Process. 769, 181-192. DOI: 10.1016/j.minpro.2005.01.002.[Crossref]
  • Santos, S. C. R. & Boaventura, R. A. R. (2008). Adsorption modelling of textile dyes by sepiolite. Appl. Clay Sci. 42, 137-145. DOI: 10.1016/j.clay.2008.01.002.[WoS][Crossref]
  • Box, G. E. P. & Behnken, D. W. (1960). Some new three level designs for the study of quantitative variables. J. Technometrics 2, 455-475. DOI:
  • Zhang, X. Wang, R. Yang, X. & Yu, J. (2007). Central composite experimental design applied to the catalytic aromatization of isophorone to 3,5-xylenol. Chemometr. Intell. Lab. Sys. 89, 45-50. DOI: 10.1016/j.chemolab.2007.05.006.[WoS][Crossref]
  • Lewandowski, G. & Cwirko, J. (2007). Uncommon applications of statistical methods of the design of experiments in chemical technology and environment protection. Pol. J. Chem. Technol. 9, 63-67. DOI: 10.2478/v10026-007-0092-x.[Crossref]
  • Ahmadi, M. Vahabzadeh, F. Bonakdarpour, B. Mofarrah, E. & Mehranian, M. (2005). Application of the central composite design and response surface methodology to the advanced treatment of olive oil processing wastewater using Fenton's peroxidation. J. Hazard. Mater. 123, 187-195. DOI: 10.1016/j.jhazmat.2005.03.042.[Crossref]
  • Catalkaya, E. C. & Kargi, F. (2007). Effects of operating parameters on advanced oxidation of diuron by the Fenton's reagent: a statistical design approach. Chemosphere 69, 485-492. DOI: 10.1016/j.chemosphere.2007.04.033.[WoS][Crossref]
  • Gursesa, A., Yalcina, M. & Dogarb, C. (2000). Electro-coagulation of some reactive dyes: a statistical investigation of some electrochemical variables. Waste Manage. 22, 491-494. DOI: 10.1016/S0956-053X(02)00015-6.[Crossref]
  • Ölmez, T. (2009). The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology. J. Hazard. Mater. 162, 1371-1378. DOI: 10.1016/j.jhazmat.2008.06.017.[Crossref][WoS]
  • Cho, H. & Zoh, K. D. (2007). Photocatalytic degradation of azo dye (Reactive Red 120) in TiO2/UV system: Optimization and modeling using a response surface methodology (RSM) based on the central composite design. Dyes Pigments 75, 533-543. DOI: 10.1016/j.dyepig.2006.06.041.[WoS][Crossref]
  • Khataee, A. R. (2009). Photocatalytic removal of C. I. Basic Red 46 on immobilized TiO2 nanoparticles: artificial neural network modeling. Environ. Technol. 30 (11), 1155-1168. DOI: 10.1080/09593330903133911.[Crossref][WoS]
  • Aleboyeh, A., Daneshvar, N. & Kasiri, M. B. (2008). Optimization of C. I. Acid Red 14 azo dye removal by electro-coagulation batch process with response surface methodology. Chem. Eng. Process. 47, 827-832. DOI: 10.1016/j.cep.2007.01.033.[WoS][Crossref]
  • Kasiri, M. B., Aleboyeh, H. & Aleboyeh, A. (2008). Modeling and optimization of heterogeneous photo-Fenton process with response surface methodology and artificial neural networks. Environ. Sci. Technol. 42, 7970-7975. DOI: 10.1021/es801372q.[WoS][Crossref][PubMed]
  • Liu, H. L. & Chiou, Y. R. (2005). Optimal decolorization efficiency of Reactive Red 239 by UV/TiO2 photocatalytic process coupled with response surface methodology. Chem. Eng. J. 112, 173-179. DOI: 10.1016/j.cej.2005.07.012.[Crossref]
  • Harrelkas, F., Azizi, A., Yaacoubi, A., Benhammou, A. & Pons, M. N. (2009). Treatment of textile dye effluents using coagulation-flocculation coupled with membrane processes or adsorption on powdered activated carbon. Desalination 235, 330-339. DOI:10.1016/j.desal.2008.02.012.[Crossref][WoS]
  • Li, Y., Chang, C. & Wen, T. (1996). Application of statistical experimental strategies to H2O2 production on Au/Graphite in alkaline solution. Ind. Eng. Chem. Res. 35, 4767-4771. DOI: 10.1021/ie960286+.[Crossref]
  • Khataee, A. R. & Mirzajani, O. UV/peroxydisulfate oxidation of C. I. Basic Blue 3: Modeling of key factors by artificial neural network. Desalination In press. DOI: 10.1016/j.desal.2009.09.142.[Crossref]
  • Behnajady, M. & Modirshahla, N. (2006). Evaluation of electrical energy per order (EEO) with kinetic modeling on photooxidative degradation of C. I. Acid Orange 7 in a tubular continuous-flow photoreactor. Ind. Eng. Chem. Res. 45, 553-557. DOI: 10.1021/ie050111c.[Crossref]
  • Zang, Y. & Farnood, R. (2005). Photocatalytic decomposition of methyl tert-butyl ether in aqueous slurry of titanium dioxide. Appl. Catal. B: Environ. 57, 275-282. DOI: 10.1016/j.apcatb.2004.11.005.[Crossref]
  • Bolton, J. R., Bircger, K. Tumas, G. & Tolman, W. C. A. (2001). Figure-of merit for the technical development and application of advanced oxidation technologies for both electricand solar-derived systems. Pure Appl. Chem. 73, 627-637. DOI: 10.1351/pac200173040627.[Crossref]
  • Khataee, A. R. Pons, M. N. & Zahraa, O. (2009). Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: influence of dye molecular structure. J. Hazard. Mater. 168, 451-457. DOI: 10.1016/j.jhazmat.2009.02.052.[Crossref]
  • Khataee, A. R., Aleboyeh, H. & Aleboyeh, A. (2009). Crystallite phase-controlled preparation, characterization and photocatalytic properties of titanium dioxide nanoparticles. J. Experiment. Nanosci. 4, 121-137. DOI: 10.1080/17458080902929945.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10026-009-0041-y
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.