Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 11 | 2 | 6-12

Article title

Selection and comparison of equipment for deagglomeration processes

Content

Title variants

Languages of publication

EN

Abstracts

EN
The unique properties of nanoparticles and nanoparticle clusters show high potential for nanomaterials to be formulated into numerous products. In this paper, nanosuspensions are formulated by braking up agglomerates in high-shear flows. The flows are generated in the specific equipment, and this paper serves as a guide for equipment selection based on mechanistic modelling. A general model based on the power input to the system is formulated to model agglomerate disintegration in different types of equipment including stirred tanks, the rotor-stator disintegrators, the high-pressure nozzle systems and bead mills. The results of computations based on the rate of energy dissipation are presented in terms of the specific energy input, which is typical of industrial applications. In the considered deagglomeration devices the stresses are generated due to various mechanisms including the effects of hydrodynamic stresses, cavitation and bead collisions. The model includes the effects of agglomerate structure on the suspension viscosity. The results of the simulations are compared with the experimental data.

Publisher

Year

Volume

11

Issue

2

Pages

6-12

Physical description

Dates

published
1 - 1 - 2009
online
19 - 6 - 2009

Contributors

  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, ul. Waryńskiego 1, 00-645 Warszawa, Poland
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, ul. Waryńskiego 1, 00-645 Warszawa, Poland

References

  • Logan, B.E. (1999). Enviromental Transport Processes (pp. 466-504). Wiley, New York.
  • Bałdyga, J., Orciuch, W., Makowski, ł., Malski-Brodzicki, M. & Malik, K. (2007). Break up of nano-particle clusters in high-shear devices. Chemical Engineering and Processing 46(9), 851-861. DOI:10.1016/j.cep.2007.05.016.[Crossref][WoS]
  • Tang, S., Ma, Y. & Shiu, C. (2001). Modeling the mechanical strength of fractal aggregates. Colloid. Surf. A: Phys. Eng. Aspects 180(1 - 2), 7-16. DOI:10.1016/S0927-7757(00)00743-3.[Crossref]
  • Elimelech, M., Gregory, J., Jia, X. & Williams, R.A. (1995). Particle Deposition and Aggregation. Butterworth-Heinemann, Oxford.
  • Collins, J.R. (1996). On the viscosity of concentrated aggregated suspensions. J. Colloid and Interface Sci. 178(1), 361-363. DOI:10.1006/jcis.1996.0125.[Crossref]
  • Buyevich, Yu.A. & Kapbsov, S.K. (1999). Segregation of a fine suspension in channel flow, J. Non-Newt. Fluid. Mech. 86(1 - 2), 157-184. PII: S0377-0257(98)00207-9.
  • Bałdyga, J., Orciuch, W., Makowski, L., Malik, K., Ozcan-Taskin, G., Eagles, W. & Padron, G. (2008). Dispersion of nanoparticle clusters in a rotor-stator mixer. Industrial and Engineering Chemistry Research 47(10), 3652-3663. DOI: 10.1021/ie070899u.[Crossref][WoS]
  • Baxter, R.J. & Percus-Yevick (1968). Equation for Hard Spheres with Surface Adhesion. Journal of Chemical Physics 49, 2770-2774. DOI: 10.1063/1.1670482.[Crossref]
  • Russel, W.B. (1984). The Huggins coefficient as a means for characterizing suspended particles. J. Chem. Soc. Faraday Trans. 2, 80, 31-41. DOI: 10.1039/F29848000031.[Crossref]
  • Cichocki, B. & Felderhof, B.U. (1990). Diffusion coefficients and effective viscosity of suspensions of sticky hard spheres with hydrodynamic interactions. J. Chem. Phys. 93(6), 4427-4432. DOI:10.1063/1.459688.[Crossref]
  • Rueb, C.J. & Zukoski, C.F. (1998). Rheology of suspensions of weakly attractive particles: approach to gelation. J. Rheol. 42(6), 1451-1476. DOI: 10.1122/1.550966.[Crossref]
  • Batchelor, G.K. & Green, J.T. (1972). The hydrodynamic interaction of two small freely-moving spheres in a linear flow field. J. Fluid Mech. 56(2), 375-400. DOI:10.1017/S0022112072002927.[Crossref]
  • Gidaspow, D. (1994). Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. Academic Press, Boston.
  • Changfu You, Hailiang Zhao, Yi Cai, Haiying Qi & Xuchang Xu (2004). Experimental investigation of interparticle collision rate in particulate flow. Multiphase Flow 30(9), 1121-1138. DOI:10.1016/j.ijmultiphaseflow. 2004.05.009.[Crossref]
  • Eskin, D., Zhupanska, O., Hamey, R., Moudgil, B. & Scarlett, B. (2005). Microhydrodynamics of stirred media milling. Powder Technology 156,(2 - 3), 95-102. DOI:10.1016/j.powtec.2005.04.004.[Crossref]
  • Crum, L. (1998). Cavitation microjets as a contributory mechanisms for renal disintegration in ESWL. J. Urol. 140(6), 1587-1590. PMID: 3057239.
  • Stender H. -H, Kwade, A. & Schwedes, J. (2004). Stress energy distribution in different stirred media mill geometries. Int. J. Miner. Process 74S(1), S103-S117. DOI:10.1016/j.minpro.2004.07.003.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10026-009-0017-y
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.