PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 11 | 1 | 28-33
Article title

The possibility of implementation of spent iron catalyst for ammonia synthesis

Content
Title variants
Languages of publication
EN
Abstracts
EN
An iron catalyst used in the ammonia synthesis is pyrophoric in its reactive, reduced form. Before further use the catalyst has to be passivated. Results of the research on the iron catalyst - its passivation, re-use as a catalyst in other processes and implementation as a substrate to obtain new nanocrystalline materials have been presented in the paper.
Publisher
Year
Volume
11
Issue
1
Pages
28-33
Physical description
Dates
published
1 - 1 - 2009
online
6 - 4 - 2009
References
  • Arabczyk, W. & Jasińska, I. (2004). Studies of the recrystalization process of the iron catalyst for ammonia synthesis. Proceedings of the 13th International Congress on Catalysis 2004, CD-ROM, Book of abstracts: 200 - 201.
  • Jasińska, I. (2004). The verification of the model of active surface of ammonia synthesis catalyst. Unpublished doctoral dissertation, Szczecin University of Technology, Szczecin, Poland.
  • Arabczyk, W. & Jasińska, I. (2006). The current state of knowledge of iron catalysts used in ammonia synthesis. Przem.Chem. 85/2, 130 - 137.
  • Pelka, R., Pattek-Janczyk, A. & Arabczyk, W. (2008). Studies of the oxidation of nanocrystalline iron with oxygen by means of TG, MS, and XRD methods. J. Phys. Chem. C, 112, 13992 - 13996. DOI:10.1021/jp710163h.[Crossref]
  • Kałucki, K., Arabczyk, W., Narkiewicz, U. & Śpiewak, Z. (1994). Industrial catalyst for ammonia syntheis with higher thermal resistance. Przem. Chem., 73/5, 174 - 175.
  • Barański, A., Pattek, A. & Reizer, A. (1978). Determination of the passivation layer thickness in iron catalysts for the ammonia synthesis. Bull. Acad. Polon. Sci. Ser. Sci. Chim., 26 353 - 358.
  • Lubkowski, K., Arabczyk, W., Grzmil, B., Michalkiewicz, B. & Pattek-Jańczyk, A. (2007). Passivation and oxidation of an ammonia iron catalyst. Appl. Catal. A, 329, 137 - 147. DOI:10.1016/j.apcata.2007.07.006.[Crossref]
  • Chudinov, M.G., Minaev, D.M., Zaichko, G.N. & Alekseev, A.M. (1984). Study of the surface state and thichkness of oxide layer of dispersed iron promoted by potassium and aluminium oxides by X-ray photoelektron spectroscopy. Kinet. Katal. 25, 1205 - 1208.
  • Khrizman, I.A. (1940). Stabilization of reduced catalyst for ammonia synthesis. Ber. Inst. Phys. Chem., Akad.Wiss.Ukr.S.S.R., 12, 15 - 20.
  • Temkin, M. & Pyzhev, V.M. ().USSR Patent No. 64607.
  • Burnett, J.A., Allgood, H.Y. & Hall, J.R. (1953). Stabilization of ammonia syntheisis catalyst. Ind. Eng. Chem., 45, 1678 - 1682.
  • Krylova, A.V., Morozov, V.V., Lachinov, S.S. & Torocheshnikov, N.S. (1978). Oxygen sorption and thermal regeneration of sorption centers on catalysts of ammonia synthesis in helium and hydrogen flow. React. Kinet. Catal. Lett., 9, 125 - 130.
  • Tsarev, V.I., Aptekar, E.L., Krylova, A.V. & Torocheshnikov, N.S. (1980). Adsorption microcalometric studies of the interaction between oxygen and an industrial ammonia synthesis catalyst. React. Kinet. Catal. Lett,. 14, 279 - 282.[Crossref]
  • Vasilevich, A.A., Blokhina, L.N., Chesnokova, R.V. & Minayev, D.M. (1988). Oxygen sorption on reduced iron catalysts with different content of promoters. React. Kinet. Catal. Lett., 36, 467 - 471.
  • Krylova, A.V., Ustimenko, G.A. & Torocheshnikov, N.S. (1982). Preparation of non-pyrophoric metallic catalysts. Stud. Surf. Sci. Catal., 16, 441 - 450.
  • Krylova, A.V., Tsarev, V.I., Peev, T.M., Kushnarenko, T.I. & Torocheshnikov, N.S. (1986).Interactions between catalysts for ammonia synthesis and oxygen. React. Kinet. Catal. Lett., 30, 229 - 235.
  • Krylova, A.V., Ustomenko, G.A., Nefedova, N.V., Peev, T.M. & Torocheshnikov, N.S. (1986). Effective routes of stabilization of pyrophoric industrial catalysts. Appl. Catal., 20, 205 - 213. DOI:10.1016/0166-9834(86)80016-1.[Crossref]
  • Arabczyk, W., Pelka, R. & Arabczyk, M. (2006). Pol. Pat. No. 381907
  • Arabczyk, W. & Ekiert, E. (2006). Pol. Pat. No. 381201
  • McHenry, M.E., Majetich, S.A., Artman, J.O., DeGraef, M. & Staley, S.W. (1994). Superparamagnetism in carbon-coated Co particles produced by the Kratschmer carbon arc process. Phys. Rev. B, 49, 11358 - 11363. DOI:10.1103/PhysRevB.49.11358.[Crossref]
  • Saito, Y., Yoshikawa, T., Okuda, M. & Fujimoto, N. (1994). Cobalt particles wrapped in graphitic carbon prepared by an arc discharge method. J. Appl. Phys,. 75, 134 - 137. DOI:10.1063/1.355901[Crossref]
  • Yoshida, Y., Shida, S., Ohsuna, T. & Shiraga, N. (1994). Synthesis, identification, and growth mechanism of Fe, Ni, and Co crystals encapsulated in multiwalled carbon nanocages. J. Appl. Phys., 76, 4533-4539. DOI:10.1063/1.358446.[Crossref]
  • Setlur, A.A., Dai, J.Y., Lauerhaas, J.M. & Chang, R.P.H. (1998). Formation of filled carbon nanotubes and nanoparticles using polycyclic aromatic hydrocarbon molecules. Carbon, 36, 721 - 723. DOI:10.1016/S0008-6223(98)00044-X.[Crossref]
  • Dravid, V.P., Host, J.J., Teng, M.H., Elliott, B,. Hwang, J., Johnson, D.L., Mason, T.O. & Weertman, J.R. (1995). Controlled-size nanocapsules. Nature, 374, 602. DOI:10.1038/374602a0.[Crossref]
  • Jiao, J., Seraphin, S., Wang, X. & Withers, J.C. (1996). Preparation and properties of ferromagnetic carbon-coated Fe, Co, and Ni nanoparticles. J. Appl. Phys., 80, 103 - 108. DOI:10.1063/1.362765[Crossref]
  • Alexandrescu, R., Morjan, I., Dumitrache, F., Birjega, R., Jaeger, C., Mutschke, H., Soare, I., Gavrila-Florescu, L. & Ciupina, V. (2007). Structural characteristics of Fe3C-based nanomaterials prepared by laser pyrolysis from different gas-phase precursors. Materials Science and Engineering C, 27, 1181 - 1184. DOI:10.1016/j.msec.2006.07.008[Crossref][WoS]
  • Moon, J.-M., An, K.H., Lee, Y.H., Park, Y.S., Bae, D. J. & Park, G. -S. (2001). High-Yield Purification Process of Singlewalled Carbon Nanotubes. J. Phys. Chem. B, 105, 5677-5681. DOI:10.1021/jp0102365.[Crossref]
  • Colomer, J.-F., Piedigrosso, P., Fonseca, A. & Nagy, J.B. (1999). Different purification methods of carbon nanotubes produced by catalytic synthesis. Synth. Met., 103, 2482 - 2483. DOI:10.1016/S0379-6779(98)01066-2.[Crossref]
  • Tohji, K., Takahashi, H., Shinoda, Y., Jeyadevan, B., Matsuoka, I., Saito, Y., Kasuya, A., Ito, S. & Nishina, Y. (1997). Purification procedure for single-walled nanotubes. J. Phys. Chem. B, 101, 1974-1978. DOI:10.1021/jp962888c.[Crossref]
  • Hernadi, K., Siska, A., Thien-Nga, L., Forró, L. & Kiricsi, I. (2001). Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes. Solid State Ionics, 141, 203 - 209. DOI:10.1016/S0167-2738(01)00789-5.[Crossref]
  • Ando, Y., Zhao, X., Inoue, S. & Iijima, S. (2002). Mass production of multiwalled carbon nanotubes by hydrogen arc discharge. J. Cryst. Growth, 237 - 239, 1926 - 1930. DOI:10.1016/S0022-0248(01)02248-5.[Crossref]
  • Morishita, K. & Takarada, T. (1999). Scanning electron microscope observation of the purification behaviour of carbon nanotubes. J. Mater. Sci., 34, 1169 - 1174. DOI:10.1023/A:1004544503055.[Crossref]
  • Ivanov, V., Fonseca, A., Nagy, J.B., Lucas, A., Lambin, P., Bernaerts, D. & Zhang, X.B. (1995). Catalytic production and purification of nanotubules having fullerene-scale diameters. Carbon, 33, 1727 - 1738. DOI:10.1016/0008-6223(95)00132-1.[Crossref]
  • Arabczyk, W., Narkiewicz, U., Pełech, I., Podsiadły, M., Ekiert, E. & Pelka, R. (2007). Pol. Patent No. 384781.
  • Arabczyk, W. & Ekiert, E. (2008). Pol. Pat. No. 386622.
  • Arabczyk, W. & Ekiert, E. (2008). Pol. Pat. No. 386623.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_v10026-009-0008-z
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.