Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2008 | 10 | 3 | 42-49

Article title

Effect of calcination temperature on photocatalytic activity of TiO2. Photodecomposition of mono- and polyazo dyes in water



Title variants

Languages of publication



The presented studies have focused on the influence of TiO2 properties, such as crystalline phase, crystallite size and surface area, on the effectiveness of degradation of azo dyes in water under UV irradiation. Two monoazo dyes: Acid Red 18 (AR18, C20H11N2Na3O10S3) and Acid Yellow 36 (AY36, C18H14N3NaO3S), and one polyazo dye Direct Green 99 (DG99, C44H28N12Na4O14S4) were applied as model compounds. The photocatalysts were prepared from a crude titanium dioxide obtained directly from the production line (sulfate technology) at the Chemical Factory "Police" (Poland). The crude TiO2 was calcinated in air for 1-4h at the temperatures ranging from 600 to 800°C. The BET specific surface area of TiO2 decreased gradually with increasing the calcination temperature. The crude TiO2 exhibited specific surface area of 277 m2/g. In case of the catalysts heated at 600, 700 and 800°C the BET surface area amounted to 62.3-53.3, 33.4-26.8 and 8.9-8.3 m2/g, for the calcination time of 1-4h, respectively. The crystallite size of anatase increased with increasing heat treatment temperature and ranged from 19 to 53 nm, for the temperatures of 600-800°C, respectively. The catalysts annealed at 600 and 700°C contained primarily anatase phase (94-97%), whereas the photocatalysts heated at 800°C were composed mainly of rutile (97-99%). The highest effectiveness of azo dyes degradation was obtained in case of the photocatalyst calcinated for 1h at 700°C. The photocatalyst was composed mainly of anatase (97%) with crystallite size of 27 nm. The most effectively photodegraded was AR18, having the molecular weight of 640.4 g/mol. The most difficult to degrade was AY36 exhibiting the lowest molecular weight from all the dyes used (375.4 g/mol).









Physical description


1 - 1 - 2008
8 - 10 - 2008


  • Institute of Chemical and Environment Engineering, Szczecin University of Technology, ul. Pułaskiego 10, 70-322 Szczecin, Poland


  • dos Santos, A.B., Cervantes, F.J. & van Lier, J.B. (2007). Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Biores. Technol. 98(12), 2369-2385. DOI: 10.1016/j.biortech.2006.11.013.[Crossref]
  • Muruganandham, M. & Swaminathan, M. (2004). Solar photocatalytic degradation of a reactive azo dye in TiO2-suspension. Sol. Energ. Mat. Sol. C. 81(4), 439-457. DOI: 10.1016/j.solmat.2003.11.022.[Crossref]
  • Reutergårdh, L.B. & Iangphasuk, M. (1997). Photocatalytic decolourization of reactive azo dye: A comparison between TiO2 and us photocatalysis. Chemosphere 35(3), 585-596. DOI:10.1016/S0045-6535(97)00122-7.[Crossref]
  • Konstantinou, I.K. & Albanis, T.A. (2004). TiO2-as-sisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations A review. Appl. Catal. B: Environ. 49(1), 1-14. DOI:10.1016/j.apcatb.2003.11.010.[Crossref]
  • Qamar, M., Saquib, M. & Muneer, M. (2005). Photocatalytic degradation of two selected dye derivatives, chromotrope 2B and amido black 10B, in aqueous suspensions of titanium dioxide. Dyes and Pigments 65(1), 1-9. DOI:10.1016/j.dyepig.2004.06.006.[Crossref]
  • Karkmaz, M., Puzenat, E., Guillard, C. & Herrmann, J.M. (2004). Photocatalytic degradation of the alimentary azo dye amaranth. Mineralization of the azo group to nitrogen. Appl. Catal. B: Environ. 51(3), 183-194. DOI:10.1016/j.apcatb.2004.02.009.[Crossref]
  • Feng, W., Nansheng, D. & Helin, H. (2000). Degradation mechanism of azo dye C. I. reactive red 2 by iron powder reduction and photooxidation in aqueous solutions. Chemosphere 41(8), 1233-1238. DOI:10.1016/S0045-6535(99)00538-X.[PubMed][Crossref]
  • Sameiro, M., Gonçalves, T., Pinto, E. M. S., Nkeonye, P. & Oliveira-Campos, A. M. F. (2005). Degradation of C.I. Reactive Orange 4 and its simulated dyebath wastewater by heterogeneous photocatalysis. Dyes and Pigments 64(2), 135-139. DOI:10.1016/j.dyepig.2004.05.004.[Crossref]
  • Hachem, C., Bocquillon, F., Zahraa, O. & Bouchy, M. (2001). Decolourization of textile industry wastewater by the photocatalytic degradation process. Dyes and Pigments 49(2), 117-125. DOI:10.1016/S0143-7208(01)00014-6.[Crossref]
  • Zielińska, B., Grzechulska, J., Grzmil, B. & Morawski, A.W. (2001). Photocatalytic degradation of Reactive Black 5. A comparison between TiO2-Tytanpol A11 and TiO2-Degussa P25 photocatalysts. Appl. Catal. B: Environ. 35(1), L1-L7. DOI:10.1016/S0926-3373(01)00230-2.[Crossref]
  • Grzechulska, J. & Morawski, A.W. (2002). Photocatalytic decomposition of azo-dye acid black 1 in water over modified titanium dioxide. Appl. Catal. B: Environ. 36(1), 45-51. DOI:10.1016/S0926-3373(01)00275-2.[Crossref]
  • Zielińska, B., Grzechulska, J. & Morawski, A. W. (2003). Photocatalytic decomposition of textile dyes on TiO2-Tytanpol A11 and TiO2-Degussa P25. J. Photoch. Photobio. A 157(1), 65-70. DOI:10.1016/S1010-6030(03)00094-7.[Crossref]
  • Zhu, Ch., Wang, L., Kong, L., Yang, X., Wang, L., Zheng, S., Chen, F., MaiZhi, F. & Zong, H. (2000). Photocatalytic degradation of AZO dyes by supported TiO2 + UV in aqueous solution. Chemosphere 41(3), 303-309. DOI:10.1016/S0045-6535(99)00487-7.[Crossref]
  • Vautier, M., Guillard, Ch. & Herrmann, J.-M. (2001). Photocatalytic degradation of dyes in water: Case study of Indigo and of Indigo Carmine. J. Catal. 201(1), 46-59. DOI:10.1006/jcat.2001.3232.[Crossref]
  • Inagaki, M., Nonaka, R., Tryba, B. & Morawski, A.W. (2006). Dependence of photocatalytic activity of anatase powders on their crystallinity. Chemosphere 64(3), 437-445. DOI:10.1016/j.chemosphere.2005.11.052.[Crossref][PubMed]
  • Toyoda, M., Nanbu, Y., Nakazawa, Y., Hirano, M. & Inagaki, M. (2004). Effect of crystallinity of anatase on photoactivity for methyleneblue decomposition in water. Appl. Catal. B: Environ. 49(4), 227-232. DOI:10.1016/j.apcatb.2003.12.012.[Crossref]
  • Colón, G., Sánchez-Espana, J.M., Hidalgo, M.C. & Navío, J.A. (2006). Effect of TiO2 acidic pre-treatment on the photocatalytic properties for phenol degradation. J. Photochem. Photobiol. A: Chemistry 179(1-2), 20-27. DOI:10.1016/j.jphotochem.2005.07.007.[Crossref]
  • Demeestere, K., Dewulf, J., Ohno, T., Herrera Salgado, P. & Van Langenhove, H. (2005). Visible light mediated photocatalytic degradation of gaseous trichloroethylene and dimethyl sulfide on modified titanium dioxide. Appl. Catal. B: Environ. 61(1-2), 140-149. DOI:10.1016/j.apcatb.2005.04.017.[Crossref]
  • Su, C., Hong, B.-Y. & Tseng, C.-M. (2004). Sol-gel preparation and photocatalysis of titanium dioxide, Catal. Today 96(3), 119-126. DOI:10.1016/j.cattod.2004.06.132.[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.