PL EN


Preferences help
enabled [disable] Abstract
Number of results
2008 | 10 | 3 | 1-3
Article title

Preparation and characterization of catalyst mix Fe-Co/MgO for carbon nanotubes growth

Content
Title variants
Languages of publication
EN
Abstracts
EN
Fe-Co/MgO is one of the most common catalyst mix applied to carbon nanotubes (CNTs) growth in chemical vapor deposition process. Therefore, here we present detailed study on the preparation and characterization of Fe-Co/MgO. The precursors of Fe and Co are iron (II) acetate and cobalt acetates, correspondingly. The molar ratio of the catalyst mix is Fe:Co:MgO=1:1:100. Initially, thermogravimetric analysis (TGA) of the mixture was performed. TGA analysis of it indicated the stepwise mass losses which pointed out the crucial thermal conditions for the changes in the elemental composition, morphology, crystallographic structure and vibrational properties. In current state of the art the lowest growth temperature for singlewalled carbon nanotubes is 550°C in CVD technique and here the characterization of the catalyst mix strongly suggest that this temperature can be decreased what would enhance the compatibility of CNT growth with current complementary metal-oxide-silicon (CMOS) technology for CNTs-based nanoelectronics. The morphology, crystallographic structure, elemental composition of the samples and its spectroscopic properties were performed via high resolution transmission electron microscopy (TEM), X-ray diffraction (XRD) and Infrared spectroscopy (IR), respectively.
Publisher

Year
Volume
10
Issue
3
Pages
1-3
Physical description
Dates
published
1 - 1 - 2008
online
8 - 10 - 2008
Contributors
  • Institute of Chemical Engineering and Chemical Technology, Szczecin University of Technology, ul. Pulaskiego 10, 70-322 Szczecin, Poland
  • Institute of Chemical Engineering and Chemical Technology, Szczecin University of Technology, ul. Pulaskiego 10, 70-322 Szczecin, Poland
  • Institute of Chemical Engineering and Chemical Technology, Szczecin University of Technology, ul. Pulaskiego 10, 70-322 Szczecin, Poland
References
  • Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.H., Bethune, D.S. & Heben, M.J. (1997). Storage of hydrogen in single-walled carbon nanotubes. Nature. 387, 377-379. DOI: 10.1038/386377a0.[Crossref]
  • Baughman, R.H., Zakhidov, A.A. & De Heer, W.A. (2002). Carbon Nanotubes - The Route Towards Applications. Science. 297, 787-792. DOI: 10.1126/science.1060928.[Crossref]
  • Iijima, S. & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature. 63, 603-605. DOI: 10.1038/363603a0.[Crossref]
  • Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature. 354, 56-58. DOI: 10.1038/354056a0.[Crossref]
  • Treacy, M.M.J., Ebbesen, T.W. & Gibson, J.M. (1996). Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature. 381, 678-680. DOI: 10.1038/381678a0.[Crossref]
  • Avouris, P. (2002). Molecular Electronics with Carbon Nanotubes. Acc. Chem. Res. 35, 1026-1034. DOI: 10.1021/ar010152e S0001-4842(01)00152-2.[Crossref]
  • Journet, C., Maser, W.K., Bernier, P., Loiseau, A, Lamy de la Chapelle, M., Lefrant, S., Deniard, P. & Lee R., Fischer, J.E. (1997). Large scale production of single wall carbon nanotubes by the electric arc technique. Nature. 388, 756-758. DOI: 10.1038/41972.[Crossref]
  • Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Hee Lee, Y., Gon Kim, S., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tománek, D., Fischer, J.E. & Smalley, R.E.(1996). Crystalline Ropes of Metallic Carbon Nanotubes. Science. 273, 483-487. DOI: 10.1126/science.273.5274.483.[Crossref]
  • Kong, J., Cassell, A.M. & Dai, H. (1998). Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett. 292, 567-574. DOI: 10.1016/S0009-2614(98)00745-3.[Crossref][WoS]
  • Lee, Ch.J., Park, J. & Yu, J.A. (2002). Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition. Chemical Physics Letters. 360, 250-255. DOI: 10.1016/S0009-2614(02)00831-X.[Crossref]
  • Kiang. C.-H. (2000). Carbon rings and cages in the growth of single-walled carbon nanotubes. J. Chem. Phys. 113, 4763-4766. DOI: 10.1063/1.1287850.[Crossref]
  • Delzeit, L., Mc Aninch, I., Cruden, B.A., Hash, D., Chen, B., Han, J. & Meyyappan, M. (2002). Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor. J.Appl.Phys. 91, 6027-6033. DOI: 10.1063/1.1465101.[Crossref]
  • Wilson J.I.B., Scheerbaum, N., Karim, S., Polwart, N., John, P., Fan, Y., Fitzgerald, A. (2002). Low temperature plasma chemical vapour deposition of carbon nanotubes. Diamond Relat.Mater. 11, 918-921. DOI: 10.1016/S0925-9635(01)00725-7.[Crossref]
  • Kato, T., Jeong, G.H., Hirata, T., Hatakeyama, R., Tohji, K., Motomiya, K. (2003). Single-walled carbon nanotubes produced by plasma-enhanced chemical vapor deposition. Chem.Phys.Lett. 381, 422-426. DOI: 10.1016/j.cplett.2003.10.007.[Crossref][WoS]
  • Li, Y., Mann, D., Rolandi, M., Kim, W., Ural, A., Hung, S., Javey, A., Cao, J., Wang, D., Yenilmez, E., Wang, Q., Gibbons, J.F., Nishi, Y. & Dai, H. (2004). Preferential Growth of Semiconducting Single-Walled Carbon Nanotubes by a Plasma Enhanced CVD Method. Nano Lett. 4, 317-321. DOI: 10.1021/n1035097c.[Crossref]
  • Bachmatiuk, A., Borowiak-Palen, E., Rümmeli, M.H., Kramberger, C., Hübers, H-.W., Gemming, T., Pichler, T. & Kaleńczuk, R.J. (2007). Facilitating the CVD synthesis of seamless double-walled carbon nanotubes. Nanotechnology. 18, 275610-275614. DOI: 10.1088/0957-4484/18/27/275610.[Crossref]
  • Bachmatiuk, A., Borowiak-Palen, E., Rümmeli, M.H., Gemming, T., Kaleńczuk R.J. (2007). Influence of the substrate loading on the quality and diameter distribution of SWCNT in alcohol-CVD. Phys. Stat. Sol. (b) 244, 3925-3929. DOI: 10.1002/pssb.200776147[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_v10026-008-0028-0
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.