Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2008 | 10 | 2 | 43-49

Article title

Uptake of phenol from aqueous solution by burned water hyacinth

Content

Title variants

Languages of publication

EN

Abstracts

EN
The potential of burned water hyacinth (BWH) for phenol adsorption from aqueous solution was studied. Batch kinetic and isotherm studies were carried out under varying experimental conditions of contact time, phenol concentration, adsorbent dosage and pH. The pH at the point of zero charge (pHPZC) of the adsorbent was determined by the titration method and the value of 8.8 ± 0.2 was obtained. The FTIR of the adsorbent was carried out in order to find the potential adsorption sites for the interaction with phenol molecules. The Freundlich and Langmuir adsorption models were used for the mathematical description of adsorption equilibrium and it was found that the experimental data fitted very well to the Langmuir model. Maximum adsorption capacity of the adsorbent was found to be 30.49 mg/g. Batch adsorption models, based on the assumption of the pseudo-first-order and pseudo-second-order models, were applied to examine the kinetics of the adsorption. The results showed that kinetic data closely followed the pseudo-second-order model.

Publisher

Year

Volume

10

Issue

2

Pages

43-49

Physical description

Dates

published
1 - 1 - 2008
online
2 - 7 - 2008

Contributors

  • Department of Chemical Engineering & Polymer Science, Shahjalal University of Science & Technology, Sylhet-3114, Bangladesh
  • Department of Chemical Engineering & Polymer Science, Shahjalal University of Science & Technology, Sylhet-3114, Bangladesh
  • Department of Chemical Engineering & Polymer Science, Shahjalal University of Science & Technology, Sylhet-3114, Bangladesh
  • Department of Chemical Engineering & Polymer Science, Shahjalal University of Science & Technology, Sylhet-3114, Bangladesh

References

  • Mostafa, M. R., Sarma, S. E. & Yousef, A. M. (1989). Removal of organic pollutants from aqueous solution: Part 1. Adsorption of phenols by activated carbon. Ind. J. Chem. 28A, 946-1948.
  • Dutta, N. N., Patil, G. S. & Brothakur, S. (1992). Phase transfer catalyzed extraction of phenolic substances from aqueous alkaline stream. Sep. Sci. Technol., 27 (11), 1435-1448. DOI: 10.1080/01496399208019435.[Crossref]
  • El- Geundi, M. S. (1997). Adsorbents for industrial pollution control. Adsorp. Sci. Technol., 15 (10), 777-787.
  • McKay, G., Prasad, G. R. & Mowli, P. R. (1986). Equilibrium studies for the adsorption of dyestuffs from aqueous solutions by low-cost materials. Water, Air Soil Poll. 29 (3), 273-283. DOI: 10.1007/BF00158759.[Crossref]
  • Mohanty, K., Das, D. & Biswas, M. N. (2005). Adsorption of phenol from aqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2 activation. Chem. Eng. J. 115(1-2) 121-131. DOI: 10.1016/j.cej.2005.09.016.[Crossref]
  • Dursun, G., Cicek, H. & Dursun, A. Y. (2005). Adsorption of phenol from aqueous solution by using carbonized beet pulp. J. Hazard. Mater. B125 (1-3), 175-182. DOI: 10.1016/j.jhazmat.2005.05.023.[Crossref]
  • Dursun, A. Y. & Kalayci, C. S. (2005). Equilibrium, Kinetic and thermodynamic studies on adsorption of phenol onto chitin. J. Hazard. Mater. B123 (1-3), 151-157. DOI: 10.1016/j.jhazmat.2005.03.034.[Crossref]
  • Al-Asheh, S. A., Banat, F. & Aitah, L. A. (2003). Adsorptioon of phenol using different types of activated bentonites. Sep. Purif. Technol. 33 (1), 1-10. DOI: 10.1016/ S1383-5866(02)00180-6.[Crossref]
  • Vigiraraghavan, T. & Alfaro, F. M. (1998). Adsorption of phenol from wastewater by peat, fly ash and bentonite. J. Hazard. Mater. 57 (1-3), 59-70. DOI: 10.1016/S0304-3894(97)00062-9.[Crossref]
  • Banat, F. A., Al-Bashir, B., Al-asheh, S. & Hayajneh, O.(2000). Adsorption of phenol by bentonite. Environ. Poll. 107 (3), 391-398. DOI:10.101/S0269-7491(99)00173-6.
  • Roostaei, N. & Tezel, F. H. (2004). Removal of phenol from aqueous solutions by Adsorption. J. Environ. Manage. 70 (2), 157-164. DOI:10.101/j.jenvman.2003.11.004.
  • Bekkouche, S., Bouhelassa, M., Salah, N. H. & Meghlaoui, F. Z. (2004). Study of adsorption of phenol on titanium oxide (TiO2). Desalination, 166, 355-362. DOI:10.1016/j.desal.2004.06.090.[Crossref]
  • Nakagawa, K., Namba, A., Mukai, S. R., Tamon, H., Ariyadejwanich, P. & Tanthapanichakoon, W. (2004). Adsorption of phenol and reactive dye from aqueous solution on activated carbons derived from solid wastes. Water Res. 38 (7), 1791-1798. DOI: 10.1016/j.watres.2004.01.002.[Crossref][PubMed]
  • Tancredi, N., Medero, N., Möller, F., Piriz, J., Plada, C. & Cordero, T. (2004). Phenol adsorption onto powdered and granular activated carbon, prepared from Eucalyptus wood. J. Colloid Interf. Sci. 279 (2), 357-363. DOI:10.1016/j.jis. 2004.06.067.[Crossref]
  • Tanthapanichakoon, W., Ariyadejwanich, P., Japthong, P., Nakagawa, K., Mukai, S. R. & Tamon, H., (2005). Adsorption- desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires. Water Res. 39 (7), 1347-1351. DOI: 10.1016/j.watres.2004.12.044.[PubMed][Crossref]
  • Rao, M., Parwate, A. V. & Bhole, A. G. (2002). Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash. Waste Manage. 22 (7), 821-830. DOI:10.1016/S0956053X(02)00011-9.[Crossref]
  • Akbal, F. (2005). Sorption of phenol and 4- chlorophenol onto pumice treated with cationic surfactant. J. Environ. Manage.74 (3), 239-244. DOI:10.1016/j.jenvman.2004.10.001[Crossref]
  • Calace, N., Nardi, E., Petronio B. M. & Pietroletti, M. (2002). Adsorption of phenols by papermill sludges. Environ. Poll. 118 (3), 315-319. DOI: 10.1016/S0269-7491(01)00303-7.[Crossref]
  • El-Sayed, A. M. (2003). Effects of fermentation methods on the nutritive value of water hyacinth for Nile tilapia. Oreochromis niloticus (L.) fingerlings, Aquaculture, 218 (1-4), 471-478. DOI: 10.1016/S0044-8486(02)00252-1.[Crossref]
  • Ganesh, P. S., Ramasamy, E. V., Gajalakshmi, S. & Abbasi, S. A. (2005). Extraction of volatile fatty acids (VFAs) from water hyacinth using inexpensive contraptions, and the use of the VFAs as feed supplement in conventional biogas digesters with concomitant final disposal of water hyacinth as vermicompost. Biochem. Eng. J. 27 (1), 17-23. DOI: 10.1016/j.bej.2005.06.010.[Crossref]
  • Grandi, A. (1981). Use of Water Hyacinth in diets for rabbits. Coniglicol. 18, 43-48.
  • Kiefer, E., Sigg, L., & Schosseler, P. (1997). Chemical and spectroscopic charactirization of algae Surfaces. Environ. Sci. Technol. 31(3), 759-764. DOI: 10.1021/es960415d.[Crossref]
  • Vadivelan, V., & Kumar, K. V., (2005). Equilibrium, kinetics, mecknism, and process design for the sorption of methylene blue onto rice hush. J. Colloid Interf. Sci. 286 (1), 90-100. DOI: 10.1016/j.jcis.2005.01.007.[Crossref]
  • Weber, T. W. & Chakraborti, R. K. (1974). Pore and solid diffusion models for fixed bed adsorbers. J. Am. Ins. Chem. Eng. 20, 228-236.[Crossref]
  • Ahmaruzzaman, M., & Sharma, D. K. (2005). Adsorption of phenols from wastewater. J. Colloid Interf. Sci. 287 (1), 14-24. DOI: 10.1016/j.jcis.2005.01.075.[Crossref]
  • Tor, A., Cengeloglu, Y., Aydin, M. E., & Ersoz, M. (2006). Removal of phenol from aqueous phase by using neutralized red mud. J. Colloid Interf. Sci. 300 (2), 498-503. DOI: 10.1016/j.jcis.2006.04.054.[Crossref]
  • Uddin, M. T., Islam, M. S., Islam M. A. & Abedin, M. Z. (2006). Removal of phenol from aqueous solution by rice husk ash. Bangladesh J Environ. Sci. 12 (2), 344-347.
  • Vazquez, I., Rodriguez-Iglesias, J., Maranon, E., Castrillon, L., & Alvarez, M. (2007). Removal of residual phenols from coke wastewater by adsorption. J. Hazard. Mater. 147 (1-2), 395-400. DOI: 10.1016/j.jhazmat.2007.01.019.[WoS][Crossref]
  • Lagergren, S. (1898). Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenkapsakademiens. Handl. 24, 1-39.
  • Ho, Y. S., & Mckay, G. (1999). Pseudo-second-order model for sorption process. Process Biochem. 34 (5), 451-465. DOI: 10.1016/S0032-9592(98)00112-5.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10026-008-0027-1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.