Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2008 | 10 | 2 | 11-16

Article title

Dye decomposition on P25 with enhanced adsorptivity


Title variants

Languages of publication



The preparation method and the activity of the TiO2-P25/N doped photocatalyst based on commercial titanium dioxide (TiO2 Aeroxide® P-25 Degussa, Germany) are presented. For the TiO2-P25/N preparation TiO2-P25 and gaseous ammonia were kept in a pressure reactor (10 bars) for 4 hours at the temperature of 200°C. This modification process changed the chemical structure of the TiO2 surface. The formation of NH4+ groups was confirmed by the FTIR measurements. Two bands in the range of ca. 1430 - 1440 cm-1 attributed to bending vibrations of NH4+ could be observed on the FTIR spectra of the catalysts modified with ammonia and the band attributed to the hydroxyl groups at 3300 - 3500 cm-1, which were not reduced after N-doping. The photocatalytic activity of the photocatalysts was checked through the decomposition of two dyes under visible light irradiation. The modified TiO2 thus prepared samples were more active than TiO2-P25 for the decomposition of dyes under visible light irradiation.









Physical description


1 - 1 - 2008
2 - 7 - 2008


  • Institute of Chemical and Environment Engineering, Szczecin University of Technology, ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • Institute of Chemical and Environment Engineering, Szczecin University of Technology, ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • Institute of Chemical and Environment Engineering, Szczecin University of Technology, ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • Institute of Chemical and Environment Engineering, Szczecin University of Technology, ul. Pułaskiego 10, 70-322 Szczecin, Poland


  • Ishibai, Y., Sato, J., Akita, S., Nishikawa, T. & Miyagishi, S. (2007). Photocatalytic oxidation of NOx by Pt-modified TiO2 under visible light irradiation. J. Photochem. Photobiol. A: Chem. 188, 106-111. DOI:10.1016/j.jphotochem.2006.11.026.[Crossref]
  • Nahar, M. S, Hasegawa, K. & Kagaya, S. (2006). Photocatalytic degradation of phenol by visible light-responsive iron-doped TiO2 and spontaneous sedimentation of the TiO2 particles. Chemosphere. 65, 1976-1982. DOI: 10.1016/j.chemosphere.2006.07.002.[Crossref]
  • Katoh, M., Aihara, H. & Horikawa, T. (2006). Spectroscopic study for photocatalytic decomposition of organic compounds on titanium dioxide containing sulfur under visible light irradiation. J. Colloid and Interface Science. 298, 805-809. DOI: 10.1016/j.jcis.2006.01.023.[Crossref]
  • Tennakone, K., Tilakaratne, C. T. K, & Kottegoda, I. R. M. (1995). Photocatalytic degradation of organic contaminants in water with TiO2 supported on polythene films. J. Photochem. Photobiol. A: Chem. 87, 177-179. DOI:10.1016/1010-6030(94)03980-9.[Crossref]
  • Quan, X., Zhao, X., Chen, S., Zhao, H., Chen, J. & Zhao Y. (2005). Enhancement of p, p-DDT photodegradation on soil surfaces using TiO2 induced by UV-light. Chemosphere. 60, 266-273. DOI: 10.1016/j.chemosphere.2004.11.044.[Crossref]
  • Wang, S., Ang, H. M. & Tade, M. O. (2007). Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art. Environ. International. 33, 694-705. DOI: 10.1016/j.envint.2007.02.011.[Crossref][WoS]
  • Xie, Y., Yuana, C. & Li, X. (2005). Photosensitized and photocatalyzed degradation of azo dye using Ln n+-TiO2 sol in aqueous solution under visible light irradiation. Mater. Sci. Engineering B. 117, 325-333. DOI: 10.1016/j.mseb.2004.12.073.[Crossref]
  • Pingxiao, W., Jianwen, T. & Zhi, D. (2007). Preparation and photocatalysis of TiO2 nanoparticles doped with nitrogen and cadmium. Mater. Chemistry and Physics. 103, 264-269. DOI:10.1016/j.matchemphys.2007.02.023.[Crossref]
  • Song, L., Qiu, R., Mo, Y., Zhang, D., Wei, H. & Xiong, Y. (2007). Photodegradation of phenol in a polymer-modified TiO2 semiconductor particulate system under the irradiation of visible light. Catal. Comm. 8, 429-433 doi:10.1016/j.catcom.2006.07.001.[Crossref]
  • Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. & Taga, Y. (2001). Visible-light photocatalysis in nitrogen-doped titanium oxides. Science. 293, 269-271. DOI: 10.1126/science.1061051.[Crossref]
  • Ihara, T., Miyoshi, M., Iriyama, Y., Matsumoto, O. & Sugihara, S. (2003). Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl. Catal. B: Environ. 42, 403-409. DOI:10.1016/S0926-3373(02)00269-2.[Crossref]
  • Yin, S., Yamaki, H., Zhang, Q., Komatsu, M., Wang, J., Tang, Q., Saito, F. & Sato, T. (2004). Mechanochemical synthesis of nitrogen-doped titania and its visible light induced NOx destruction ability. Solid State Ionics. 172, 205-209. DOI: 10.1016/j.ssi.2004.05.018.[Crossref]
  • Silveyra, R., De La Torre Sáenz, L., Flores, W. A., Martínez, V. C. & Elguézabal, A. A. (2005). Doping of TiO2 with nitrogen to modify the interval of photocatalytic activation towards visible radiation. Catal. Today, 107-108, 602-605. DOI: 10.1016/j.cattod.2005.07.023.[Crossref]
  • Wang, Y., Feng, C., Jin, Z., Zhang, J. & Yang J., Zhang S. (2006). A novel N-doped TiO2 with high visible light photocatalytic activity. J. Mol. Catal. A: Chem. 260, 1-3. DOI: 10.1016/j.molcata.2006.06.044.[Crossref]
  • Pera-Titus, M., García-Molina, V., Banos, M. A., Giménez, J. & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review, Appl. Catal. B: Environ. 47, 219-256. DOI:10.1016/j.apcatb.2003.09.010.[Crossref]
  • Ohno, T., Satukawa, K., Tokieda, K. & Matsumura, M. (2001). Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases. J. Catal. 203, 82-86. DOI:10.1006/jcat.2001.3316.[Crossref]
  • Wawrzyniak, B., Janus, M., Grzmil, B., Morawski, A. W. (2007). Preparation of the TiO2 photocatalyst using pressurized ammonia. Pol. J. Chem. Tech. 9, 51-56.
  • Ishibashi, K., Fujishima, A., Watanabe, T. & Hashimoto, K. (2000). Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem. Commun. 2, 207-210. DOI:10.1016/S1388-2481(00)00006-0.[Crossref]
  • Mozia, S., Tomaszewska, M., Kosowska, B., Grzmil, B., Morawski, A. W. & Kałucki, K. (2005). Decomposition of nonionic surfactant on a nitrogen-doped photocatalyst under visible-light irradiation. Appl. Catal. B Environ. 55, 195-200. DOI: 10.1016/j.apcatb.2004.09.019.[Crossref]
  • Wawrzyniak, B. & Morawski, A. W. (2006). Solar-light-induced photocatalytic decomposition of two azo dyes on new TiO2 photocatalyst containing nitrogen. Appl. Catal. B: Environ. 62, 150-158. DOI: 10.1016/j.apcatb.2005.07.008.[Crossref]
  • Wawrzyniak, B., Tryba, B. & Morawski, A. W. (2007). TiO2-Nitrogen Modified for Water Decolourisation under VIS Radiation. J. Adv. Oxid. Technol. 10, 17-23.
  • Koneko, M. & Okura, I. (Eds.) (2002) Photocatalysis Science and Technology, Kodansha Spriger (pp. 117).
  • Hadjiivanov, K. (1998). FTIR study of CO and NH coadsorption on TiO2 rutile. Appl. Surf. Sci. 135, 331-338. DOI: 10.1016/S0169-4332(98)00298-0.[Crossref]
  • Suda, Y., Kawasaki, H., Uea, T. & Ohshima, T. (2004). Preparation of high quality nitrogen doped TiO2 thin film as a photocatalyst using a pulsed laser deposition method. Thin Solid Films. 453-454, 162-166. DOI: 10.1016/j.tsf.2003.11.185.[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.