Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2008 | 10 | 2 | 1-4

Article title

Reversible electron charge transfer in single-wall carbon nanotubes


Title variants

Languages of publication



Single-wall carbon nanotubes (SWCNT) have proved to be very special materials due to their unique electronic properties. Over the last years many scientists have dedicated their research to the study of the these materials as an electronic system. Amphoteric doping effects (n-type and p-type), which can be reversed, became a very popular way of manipulating the optic and electronic properties of carbon nanotubes. In the particular case of SWCNT, the most common and widely used procedure, which changes their properties, is acid treatment applied as a purification procedure. The effect of the addition of this kind of the dopant has been widely studied but not fully understood so far. Here, we present a study, of two kinds of SWCNT, produced within different techniques: (i) chemical vapors deposition and (ii) laser ablation. The main difference between the two types is the diameter distribution of the obtained materials, which is broad in the first technique and narrow in the second. After the acid treatment it is possible to observe a diameter sensitive doping effect on both samples. Resonance Raman spectroscopy, optical absorption spectroscopy (OAS) in UV/Vis/NIR and the Fourier transform middle-infrared (FTIR) spectroscopy have been applied for the characterization of the samples.


SWCNT   doping   Raman  









Physical description


1 - 1 - 2008
2 - 7 - 2008


  • Centre of Knowledge Based Nanomaterials and Technologies, Institute of Chemical and Environment Engineering, Szczecin University of Technology, Poland


  • Montoro, L. A. & Rosole, J. M. (2006). A multi-step treatment to effective purification of single-walled carbon nanotubes, Carbon. 44, 3293.
  • Schönfelder, R., Rümmeli, M. H., Gruner, W., Löffler, M., Acker, J., Hoffmann, V., Gemming, T., Büchner, B. & Pichler, T. (2007). Purification induced sidewall functionalization of magnetically pure single walled carbon nanotubes, Nanotechnology. 18(37), 375601-8.[WoS]
  • Kukovecz, A., Pichler, T., Pfeiffer, R., Kramberger, Ch. & Kuzmany, H. (2003). Diameter selective doping of single wall carbon nanotubes, Phys. Chem. Chem. Phys. 5, 582-87.
  • Dresselhaus, M. S., Dresselhaus, G., Saito, R. & Jorio, A. (2005). Raman Spectroscopy of Carbon Nanotubes, Physics Reports. 409, 47-94.
  • Rao, A. M., Bandow, S., Richter, E. & Eklund, P. C. (1998). Raman spectroscopy of pristine and doped single wall carbon nanotubes, Thin Solid Films. 331, 141-7.
  • Liu, X., Pichler, T., Knupfer, M. & Fink, J. (2003). Electronic and optical properties of alkali-metal-intercalated single-wall carbon nanotubes, Phys. Rew. B. 67, 125403.
  • Pichler, T., Kukovecz, A., Kuzmany, H. & Kataura, H. (2003). Charge transfer in doped single wall carbon nanotubes, Synthetic Met. 135-136, 717-19.
  • Bachmatiuk, A., Borowiak-Palen, E., Rummeli, M. H., Kramberger, Ch., Hubers, H. W., Gemming, T., Pichler, T. & Kalenczuk, R. J. (2007). Facilitating the CVD synthesis of seamless double-walled carbon nanotubes, Nanotecnology. 18, 275610-14.
  • Borowiak-Palen, E., Pichler, T., Liu, X., Knupfer, M., Graff, A., Jost, O., Pompe, W., Kalenczuk, R. J. & Fink, J. (2002). Reduced diameter distribution of single-wall carbon nanotubes by selective oxidation, Chem. Phys. Lett. 363, 567-72.
  • Thess, A. et al. (1996). Crystalline ropes of metallic carbon nanotubes, Science New Series. 273(5274), 483-487.
  • Jorio, A., Pimenta, M. A., Souza-Filho, A. G., Saito, R., Dresselhaus, G. & Dresselhaus, M. S. (2006). Characterizing carbon nanotubes samples with resonance Raman scattering, New J. Phys. 5, 139.1-139.17.
  • Kukovecz, A., Pichler, T., Pfeiffer, R. & Kuzmany, H. (2002). Diameter selective charge transfer in p- and n-doped single wall carbon nanotubes synthesized by the HiPCO method, Chem. Commun. 1730-1731.
  • Kukoveczl, A., Kramberger, Ch., Holzinger, M., Kuzmany, H., Schalko, J., Mannsberger, M. & Hirssch, A. (2002). On the stacking behaviour of functionalized single-wall carbon nanotubes, J. Phys. Chem. B. 106, 6374-80.
  • Bower, C., Kleinhammes, A., Wu, Y. & Zhou, O. (1998). ESR study of electrochemically doped chalcogenide nanotubes, Chem. Phys. Lett. 288, 481-6.
  • Petaccia, L., Goldoni, A., Lizzit, S. & Larciprete, R. (2005). Single-wall carbon nanotube interaction with gases: sample contaminants and environmental monitoring, J. Electron Spectrosc. 144-147, 793.
  • Kuzmany, H., Kukovecz, A., Simon, F., Holzweber, M., Kramberger, Ch. & Pichler, T. (2004). Functionalization of carbon nanotubes, Synthetic Met. 141, 113-22.
  • Kuzmany, H., Kukovecz, A., Kramberger, Ch., Pichler, T., Holzinger, M. & Kataura, H. (2003). Exohedral and endohedral functionalization of single wall carbon nanotubes, Synthetic Met. 135-136, 791-93.
  • Barreiro, A., Selbmann, D., Pichler, T., Biedermann, K., Gemming, T., Rummeli, M., Schwalke, U. & Buchner, B. (2006). On the effects of solution and reaction parameters for the aerosol-assisted CVD growth of long carbon nanotubes, Appl. Phys. A. 82, 719-25.
  • Bendjemil, B., Borowiak-Palen, E., Graff, A., Pichler, T., Guerioune, M., Fink, J. & Knupfer M. (2004). Elimination of metal catalyst and carbon-like impurities from single-wall carbon nanotube raw material, Appl. Phys. A. 78, 311-14.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.