Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 68 | 1-2 |

Article title

Enhancing the Separation of Enantiomers in Adsorbed Overlayers: A Monte Carlo Study

Content

Title variants

Languages of publication

EN

Abstracts

EN
The influence of external factors on the chiral resolution of enantiomers in adsorbed overlayes has been especially interesting form the perspective of creation of chiral surfaces. Chiral segregation of this type can be induced or enhanced, for example, by an external unidirectional fields such as magnetic or electric field. To explore the effect of an external field on the 2D chiral resolution of model enentiomers we performed cannonical Monte Carlo simulations on a square lattice of equivalent adsorption sites. The adsorbed molecules which are sensitive to the external field, were assumed to consist of four identical segments and they were able to adopt four possible orientations on a square lattice. Shortrange segment-segment interactions limited to the nearest neighbours on the lattice were allowed to account for the intermolecular interactions. The calculations were performed for two exemplary molecular structures and the strength of the external field was gradually increased in each case. The preliminary results described herein demonstrate that continuously changed external fields can induce chiral resolution of enantiomers of appropriate geometry. The insights from this study can be useful in developing strategies for 2D chiral separations in which external stimuli are used.

Year

Volume

68

Issue

1-2

Physical description

Dates

online
2014-10-17

Contributors

  • Department of Theoretical Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowskiej Sq.3, 20-031 Lublin, Poland
  • Department of Theoretical Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowskiej Sq.3, 20-031 Lublin, Poland

References

  • 1. S. M. Barlow, R. Raval, Surf. Sci. Rep., 50, 201 (2003).
  • 2. J. V. Barth, Annu. Rev. Phys. Chem., 58, 375 (2007).
  • 3. J. Barth, G. Costantini, K. Kern, Nature, 437, 671 (2005).
  • 4. A. Kühnle, Curr. Opin. Coll. Int. Sci., 14, 157 (2009).
  • 5. R. Perusquía, J. Peón, J. Quintana, Physica A, 345, 130 (2005).
  • 6. I. Medved’, A. Trník, D. A. Huckaby, Phys. Rev. E., 80, 011601 (2009).
  • 7. I. Medved’, A. Trník, D. A. Huckaby, J. Stat. Mech., 12, P12027 (2010).
  • 8. I. Paci, I. Szleifer, M. A. Ratner, J. Am. Chem. Soc., 129, 3545 (2007).
  • 9. I. Paci, J. Phys. Chem. C, 114, 19425 (2010).
  • 10. P. Szabelski, A. Woszczyk, Langmuir, 28, 11095 (2012).
  • 11. D. Frenkel, B. Smit, Understanding Molecular Simulation From Algorithms to Applications, Academic Press, 2002.
  • 12. H. Cun, Ye Wang, B. Yang, L. Zhang, S. Du, Yu Wang, K.-H. Ernst, H.-J. Gao, Langmuir, 26, 3402 (2010).
  • 13. A. M. Berg, D. L. Patrick, Angew. Chem. Int. Ed., 44, 1821 (2005).

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_umcschem-2013-0011
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.