Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2013 | 1 | 1-18

Article title

Routes to extrinsic and intrinsic self-healing corrosion
protective sol-gel coatings: a review


Title variants

Languages of publication



Sol-gel pre-treatments and coatings are an important class of passive
protective coatings, which can effectively prevent corrosion of various
metallic substrates through adhesion improvement and barrier protection.
Recently, sol-gel chemistry has been proposed as an appropriate method
for implementation of self-healing functionality in coatings via extrinsic
concepts. In this review we will analyze the most relevant existing works
on self-healing sol-gel coatings, including new work done in the direction of
implementing intrinsic healing capabilities to sol-gels. The development of
active sol-gel coatings is due to the broad chemical versatility of precursors
and low processing temperature of this type of chemistry.







Physical description


07 - 04 - 2013
18 - 1 - 2013
19 - 06 - 2013


  • Novel Aerospace Materials Group,
    Department of Aerospace Materials and
    Manufacturing, Faculty of Aerospace
    Engineering, Delft University of
    Technology, Kluyverweg 1, 2629 HS,
    Delft, The Netherlands
  • Novel Aerospace Materials Group,
    Department of Aerospace Materials and
    Manufacturing, Faculty of Aerospace
    Engineering, Delft University of
    Technology, Kluyverweg 1, 2629 HS,
    Delft, The Netherlands
  • Novel Aerospace Materials Group,
    Department of Aerospace Materials and
    Manufacturing, Faculty of Aerospace
    Engineering, Delft University of
    Technology, Kluyverweg 1, 2629 HS,
    Delft, The Netherlands


  • [1] M.G. Fontana, Corrosion Engineering, 3rd ed., Hill InternationalEditions Series in Material Science and Engineering,Singapore, 1987.
  • [2] A.W. Peabody, Peabody’s Control of Pipeline Corrosion, 2nded., NACE International The Corrosion Society, Houston,Texas, 2001.
  • [3] A.S. Khanna, Nanotechnology in High Performance PaintCoatings, Asian J. Exp. Sci., 21 (2008) 25-32.
  • [4] A. Akshay, Environmentally-Compliant Novolac Superprimersfor Corrosion Protection of Aluminum Alloys, in: MaterialsScience and Engineering University of Cincinnati 2006, pp. 204.
  • [5] S.J. García, J.M.C. Mol, T.H. Muster, A.E. Hughes, T.M.J. Mardel, H.T. T. Markely, J.H.W.d. Wit, Advances in theselection and use of rare-earth based inhibitors for selfhealingorganic coatings, in: Self-Healing Properties ofNew Surface Treatments, European Federation of CorrosionSeries, Maney Publishing, UK, 2011, pp. 148–183.
  • [6] M.L. Zheludkevich, I.M. Salvado, M.G.S. Ferreira, Solgelcoatings for corrosion protection of metals, Journal ofMaterials Chemistry, 15 (2005) 5099-5111.[Crossref]
  • [7] D. Wang, G.P. Bierwagen, Sol-gel coatings on metals for corrosionprotection, Progress in Organic Coatings, 64 (2009) 327-338.
  • [8] C.J. Brinker, G.W. Scherer, Sol-Gel Science: The Physicsand Chemistry of Sol Gel Processing, Academic Press, INC.,1990.
  • [9] M. Niederberger, N. Pinna, Aqueous and Nonaqueous Sol-Gel Chemistry, in: Metal Oxide Nanoparticles in OrganicSolvents Synthesis, Formation, Assembly and Application,Springer-Verlag London Limited, 2009, pp. 7-18.
  • [10] A. Vioux, Nonhydrolytic Sol−Gel Routes to Oxides, Chemistryof Materials, 9 (1997) 2292-2299.
  • [11] L.L. Hench, J.K. West, The sol-gel process, ChemicalReviews, 90 (1990) 33-72.[Crossref]
  • [12] J.D. Wright, N.A.J.M. Sommerdijk, Sol-Gel Materials:Chemistry and Applications, Taylor & Francis Book Ltd, 2001.
  • [13] M. Guglielmi, Sol-gel coatings on metals, Journal of Sol-GelScience and Technology, 8 (1997) 443-449.
  • [14] R. Benthem, W. Ming, G. With, S. van der Zwaag, SelfHealing Polymer Coatings Self Healing Materials, in, SpringerNetherlands, 2008, pp. 139-159.
  • [15] S.J. Garcia, H.R. Fischer, S. van der Zwaag, A criticalappraisal of the potential of self healing polymeric coatings,Progress in Organic Coatings, 72 (2011) 211-221.
  • [16] L. Fedrizzi, Self-Healing Properties of New SurfaceTreatments, Maney Publishing, UK, 2011.
  • [17] S. van der Zwaag, Self-Healing Materials: An AlternativeApproach to 20 Centuries of Materials Science, Springer,Dordrecht, The Netherlands, 2007.
  • [18] S.K. Ghosh, Self-Healing Materials: Fundamentals, DesignStrategies, and Applications, Wiley-VCH 2009.
  • [19] M.L. Zheludkevich, D.G. Shchukin, K.A. Yasakau, H.Möhwald, M.G.S. Ferreira, Anticorrosion Coatings with Self-Healing Effect Based on Nanocontainers Impregnated withCorrosion Inhibitor, Chemistry of Materials, 19 (2007) 402-411.
  • [20] M.F. Montemor, M.G.S. Ferreira, A review on the useof nanostructured and functional organosilane coatingsmodified withcorrosion inhibitors as environmentally friendlypre-treatments for metallic substrates, in: W.F. L Fedrizzi,MF Montemor (Ed.) Self-Healing Properties of New SurfaceTreatments, UK, 2011.
  • [21] W.J. van Ooij, D. Zhu, M. Stacy, A. Seth, T. Mugada, J.Gandhi, P. Puomi, Corrosion Protection Properties ofOrganofunctional Silanes-An Overview, Tsinghua Science &;Technology, 10 (2005) 639-664.[Crossref]
  • [22] S. Zheng, J. Li, Inorganic-organic sol gel hybrid coatings forcorrosion protection of metals, Journal of Sol-Gel Scienceand Technology, 54 (2010) 174-187.
  • [23] J. Wen, G.L. Wilkes, Organic/Inorganic Hybrid NetworkMaterials by the Sol-Gel Approach, Chemistry of Materials, 8(1996) 1667-1681.
  • [24] Y. Liu, D. Sun, H. You, J.S. Chung, Corrosion resistanceproperties of organic-inorganic hybrid coatings on 2024aluminum alloy, Applied Surface Science, 246 (2005) 82-89.
  • [25] K.M. S. Meera, R. M. Sankar, S.N. Jaisankar, A.B. Mandal,Physicochemical Studies on Polyurethane/Siloxane Cross-Linked Films for Hydrophobic Surfaces by the Sol–Gel Process, The Journal of Physical Chemistry B, 117 (2013)2682-2694.
  • [26] T.L. Metroke, E.T. Knobbe, Crosslinked organic–inorganichybrid thin films for corrosion resistance: spectroscopicand salt spray characterization, in: Materials researchsociety symposium, San Francisco, 2000, pp. CC11.14.11–CC11.14.16.
  • [27] K.J. Croes, A.J. Vreugdenhil, M. Yan, T.A. Singleton, S. Boraas,V.J. Gelling, An electrochemical study of corrosion protectionby in situ oxidative polymerization in phenylenediaminecrosslinked sol-gel hybrid coatings, Electrochimica Acta, 56(2011) 7796-7804.[Crossref]
  • [28] A.N. Khramov, V.N. Balbyshev, N.N. Voevodin, M.S. Donley,Nanostructured sol-gel derived conversion coatings basedon epoxy- and amino-silanes, Progress in Organic Coatings,47 (2003) 207-213.
  • [29] E. Roussi, A. Tsetsekou, D. Tsiourvas, A. Karantonis, Novelhybrid organo-silicate corrosion resistant coatings based onhyperbranched polymers, Surface and Coatings Technology,205 (2011) 3235-3244.
  • [30] A.J. Vreugdenhil, V.J. Gelling, M.E. Woods, J.R. Schmelz,B.P. Enderson, The role of crosslinkers in epoxy-aminecrosslinked silicon sol-gel barrier protection coatings, ThinSolid Films, 517 (2008) 538-543.[Crossref]
  • [31] T. Metroke, O. Kachurina, E. Knobbe, Electrochemical andsalt spray analysis of multilayer ormosil/conversion coatingsystems for the corrosion resistance of 2024-T3 aluminumalloys, Journal of Coatings Technology, 74 (2002) 53-61.
  • [32] M. Sheffer, A. Groysman, D. Mandler, Electrodepositionof sol-gel films on Al for corrosion protection, CorrosionScience, 45 (2003) 2893-2904.[Crossref]
  • [33] M. Sheffer, A. Groysman, D. Starosvetsky, N. Savchenko, D.Mandler, Anion embedded sol-gel films on Al for corrosionprotection, Corrosion Science, 46 (2004) 2975-2985.[Crossref]
  • [34] Y. Joshua Du, M. Damron, G. Tang, H. Zheng, C.J. Chu,J.H. Osborne, Inorganic/organic hybrid coatings for aircraftaluminum alloy substrates, Progress in Organic Coatings, 41(2001) 226-232.
  • [35] M. Ochi, R. Takahashi, Phase structure and thermomechanicalproperties of primary and tertiary amine-cured epoxy/silicahybrids, Journal of Polymer Science Part B: Polymer Physics,39 (2001) 1071-1084.[Crossref]
  • [36] S. Turri, L. Torlaj, F. Piccinini, M. Levi, Abrasion andnanoscratch in nanostructured epoxy coatings, Journal ofApplied Polymer Science, 118 (2010) 1720-1727.
  • [37] T. Nazir, A. Afzal, H. Siddiqi, S. Saeed, M. Dumon, Theinfluence of temperature and interface strength on themicrostructure and performance of sol–gel silica–epoxynanocomposites, Polymer Bulletin, 67 (2011) 1539-1551.[Crossref]
  • [38] X. Yan, G. Xu, Influence of silane coupling agent on corrosionresistantproperty in low infrared emissivity Cu/polyurethanecoating, Progress in Organic Coatings, 73 (2012) 232-238.
  • [39] Z. Luo, R.Y. Hong, H.D. Xie, W.G. Feng, One-step synthesis offunctional silica nanoparticles for reinforcement of polyurethanecoatings, Powder Technology, 218 (2012) 23-30.[Crossref]
  • [40] D. Kim, K. Jeon, Y. Lee, J. Seo, K. Seo, H. Han, S. Khan,Preparation and characterization of UV-cured polyurethaneacrylate/ZnO nanocomposite films based on surface modifiedZnO, Progress in Organic Coatings, 74 (2012) 435-442.
  • [41] A.K. Mishra, R. Narayan, T.M. Aminabhavi, S.K. Pradhan,K.V.S.N. Raju, Hyperbranched polyurethane-urea-imide/oclay-silica hybrids: Synthesis and characterization, Journal ofApplied Polymer Science, 125 (2012) E67-E75.[Crossref]
  • [42] S.H. Cho, S.R. White, P.V. Braun, Self-Healing PolymerCoatings, Advanced Materials, 21 (2009) 645-649.[Crossref]
  • [43] S.J. García, H.R. Fischer, P.A. White, J. Mardel, Y. González-García, A.E.H. J.M.C. Mol, Self-healing anticorrosive organiccoating based on an encapsulated water reactive SilylEster: synthesis and proof of concept, Progress in OrganicCoatings, 70 (2011) 142-149.
  • [44] J. Mardel, S.J. Garcia, P.A. Corrigan, T. Markley, A.E.Hughes, T.H. Muster, D. Lau, T.G. Harvey, A.M. Glenn, P.A.White, S.G. Hardin, X.Z. C. Luo, G.E. Thompson, J.M.C. Mol,The Characterisation and Performance of Ce(dbp)3-InhibitedEpoxy Coatings, Progress in Organic Coatings , 70 (2011)90-101.
  • [45] N. Pirhady Tavandashti, S. Sanjabi, T. Shahrabi, Evolution ofcorrosion protection performance of hybrid silica based sol–gel nanocoatings by doping inorganic inhibitor, Materials andCorrosion, 62 (2011) 411-415.[Crossref]
  • [46] W. Trabelsi, E. Triki, L. Dhouibi, M.G.S. Ferreira, M.L.Zheludkevich, M.F. Montemor, The use of pre-treatmentsbased on doped silane solutions for improved corrosionresistance of galvanised steel substrates, Surface andCoatings Technology, 200 (2006) 4240-4250.
  • [47] M.F. Montemor, W. Trabelsi, M. Zheludevich, M.G.S. Ferreira,Modification of bis-silane solutions with rare-earth cations forimproved corrosion protection of galvanized steel substrates,Progress in Organic Coatings, 57 (2006) 67-77.
  • [48] L.-K. Wu, J.-M. Hu, J.-Q. Zhang, Electrodeposition of zincdopedsilane films for corrosion protection of mild steels,Corrosion Science, 59 (2012) 348-351.[Crossref]
  • [49] W. Trabelsi, P. Cecilio, M.G.S. Ferreira, M.F. Montemor,Electrochemical assessment of the self-healing properties ofCe-doped silane solutions for the pre-treatment of galvanisedsteel substrates, Progress in Organic Coatings, 54 (2005)276-284.
  • [50] M. Garcia-Heras, A. Jimenez-Morales, B. Casal, J.C. Galvan,S. Radzki, M.A. Villegas, Preparation and electrochemicalstudy of cerium-silica sol-gel thin films, Journal of Alloys andCompounds, 380 (2004) 219-224.
  • [51] R. Zandi Zand, K. Verbeken, A. Adriaens, Corrosion resistanceperformance of cerium doped silica sol–gel coatings on 304Lstainless steel, Progress in Organic Coatings, 75 (2012) 463-473.
  • [52] E. Certhoux, F. Ansart, V. Turq, J.P. Bonino, J.M. Sobrino,J. Garcia, J. Reby, New sol–gel formulations to increase thebarrier effect of a protective coating against the corrosionof steels, Progress in Organic Coatings, 76 (2013) 165-172.
  • [53] J.-B. Cambon, F. Ansart, J.-P. Bonino, V. Turq, Effect of ceriumconcentration on corrosion resistance and polymerization ofhybrid sol–gel coating on martensitic stainless steel, Progressin Organic Coatings, 75 (2012) 486-493.
  • [54] A. Pepe, M. Aparicio, A. Duran, S. Cere, Cerium hybrid silicacoatings on stainless steel AISI 304 substrate, Journal of Sol-Gel Science and Technology, 39 (2006) 131-138.
  • [55] P.H. Suegama, H.G. de Melo, A.V. Benedetti, I.V. Aoki,Influence of cerium (IV) ions on the mechanism of organosilanepolymerization and on the improvement of its barrier properties,Electrochimica Acta, 54 (2009) 2655-2662.[Crossref]
  • [56] V. Palanivel, Y. Huang, W.J. van Ooij, Effects of addition ofcorrosion inhibitors to silane films on the performance ofAA2024-T3 in a 0.5 M NaCl solution, Progress in OrganicCoatings, 53 (2005) 153-168.
  • [57] A. Cabral, R.G. Duarte, M.F. Montemor, M.L. Zheludkevich,M.G.S. Ferreira, Analytical characterisation and corrosionbehaviour of bis-[triethoxysilylpropyl]tetrasulphide pre-treatedAA2024-T3, Corrosion Science, 47 (2005) 869-881.
  • [58] R.V. Lakshmi, G. Yoganandan, K.T. Kavya, B.J. Basu,Effective corrosion inhibition performance of Ce3+ dopedsol–gel nanocomposite coating on aluminum alloy, Progressin Organic Coatings, 76 (2013) 367-374.
  • [59] N.N. Voevodin, N.T. Grebasch, W.S. Soto, F.E. Arnold, M.S.Donley, Potentiodynamic evaluation of sol-gel coatings withinorganic inhibitors, Surface and Coatings Technology, 140(2001) 24-28.
  • [60] H. Shi, F. Liu, E. Han, Corrosion behaviour of sol-gel coatingsdoped with cerium salts on 2024-T3 aluminum alloy, MaterialsChemistry and Physics, 124 (2010) 291-297.
  • [61] S. Kozhukharov, V. Kozhukharov, M. Schem, M. Aslan, M.Wittmar, A. Wittmar, M. Veith, Protective ability of hybridnano-composite coatings with cerium sulphate as inhibitoragainst corrosion of AA2024 aluminium alloy, Progress inOrganic Coatings, 73 (2012) 95-103.
  • [62] N.C. Rosero-Navarro, L. Paussa, F. Andreatta, Y. Castro, A.Durán, M. Aparicio, L. Fedrizzi, Optimization of hybrid solgelcoatings by combination of layers with complementaryproperties for corrosion protection of AA2024, Progress inOrganic Coatings, 69 (2010) 167-174.
  • [63] F. Andreatta, L. Paussa, P. Aldighieri, A. Lanzutti, D. Raps, L.Fedrizzi, Corrosion behaviour of sol-gel treated and paintedAA2024 aluminium alloy, Progress in Organic Coatings, 69(2010) 133-142.
  • [64] L. Paussa, N.C. Rosero Navarro, D. Bravin, F. Andreatta,A. Lanzutti, M. Aparicio, A. Duran, L. Fedrizzi, ZrO2 sol-gelpre-treatments doped with cerium nitrate for the corrosionprotection of AA6060, Progress in Organic Coatings, 74(2012) 311-319.
  • [65] T. Sugama, Cerium acetate-modified aminopropylsilane triol:A precursor of corrosion-preventing coating for aluminumfinnedcondensers, Journal of Coatings Technology andResearch, 2 (2005) 649-659.
  • [66] M.F. Montemor, M.G.S. Ferreira, Electrochemical study ofmodified bis-[triethoxysilylpropyl] tetrasulfide silane films applied on the AZ31 Mg alloy, Electrochimica Acta, 52 (2007)7486-7495.[Crossref]
  • [67] A.J. Vreugdenhil, M.E. Woods, Triggered release of molecularadditives from epoxy-amine sol-gel coatings, Progress inOrganic Coatings, 53 (2005) 119-125.
  • [68] A.N. Khramov, V.N. Balbyshev, L.S. Kasten, R.A. Mantz,Sol–gel coatings with phosphonate functionalities for surfacemodification of magnesium alloys, Thin Solid Films, 514(2006) 174-181.[Crossref]
  • [69] S.V. Lamaka, M.F. Montemor, A.F. Galio, M.L. Zheludkevich,C. Trindade, L.F. Dick, M.G.S. Ferreira, Novel hybrid sol–gelcoatings for corrosion protection of AZ31B magnesium alloy,Electrochimica Acta, 53 (2008) 4773-4783.[Crossref]
  • [70] V. Dalmoro, J. dos Santos, D. Azambuja, Corrosion behavior ofAA2024-T3 alloy treated with phosphonate-containing TEOS,Journal of Solid State Electrochemistry, 16 (2012) 403-414.
  • [71] A.N. Khramov, N.N. Voevodin, V.N. Balbyshev, M.S. Donley,Hybrid organo-ceramic corrosion protection coatings withencapsulated organic corrosion inhibitors, Thin Solid Films,447-448 (2004) 549-557.
  • [72] A.N. Khramov, N.N. Voevodin, V.N. Balbyshev, R.A.Mantz, Sol-gel-derived corrosion-protective coatings withcontrollable release of incorporated organic corrosioninhibitors, Thin Solid Films, 483 (2005) 191-196.[Crossref]
  • [73] M. Quinet, B. Neveu, V. Moutarlier, P. Audebert, L. Ricq,Corrosion protection of sol-gel coatings doped with anorganic corrosion inhibitor: Chloranil, Progress in OrganicCoatings, 58 (2007) 46-53.
  • [74] V. Palanivel, D. Zhu, W.J. van Ooij, Nanoparticle-filledsilane films as chromate replacements for aluminum alloys,Progress in Organic Coatings, 47 (2003) 384-392.
  • [75] E. Gonzalez, J. Pavez, I. Azocar, J.H. Zagal, X. Zhou, F. Melo,G.E. Thompson, M.A. Páez, A silanol-based nanocompositecoating for protection of AA-2024 aluminium alloy,Electrochimica Acta, 56 (2011) 7586-7595.[Crossref]
  • [76] P.H. Suegama, H.G. de Melo, A.A.C. Recco, A.P.Tschiptschin, I.V. Aoki, Corrosion behavior of carbon steelprotected with single and bi-layer of silane films filled withsilica nanoparticles, Surface and Coatings Technology, 202(2008) 2850-2858.
  • [77] M.L. Zheludkevich, R. Serra, M.F. Montemor, K.A. Yasakau,I.M.M. Salvado, M.G.S. Ferreira, Nanostructured sol-gelcoatings doped with cerium nitrate as pre-treatmentsfor AA2024-T3: Corrosion protection performance,Electrochimica Acta, 51 (2005) 208-217.
  • [78] M.L. Zheludkevich, R. Serra, M.F. Montemor, I.M.M.Salvado, M.G.S. Ferreira, Corrosion protective propertiesof nanostructured sol-gel hybrid coatings to AA2024-T3,Surface and Coatings Technology, 200 (2006) 3084-3094.
  • [79] N. Pirhady Tavandashti,, S. Sanjabi, Corrosion study of hybridsol-gel coatings containing boehmite nanoparticles loadedwith cerium nitrate corrosion inhibitor, Progress in OrganicCoatings, 69 (2010) 384-391.
  • [80] M.F. Montemor, M.G.S. Ferreira, Analytical characterizationof silane films modified with cerium activated nanoparticles and its relation with the corrosion protection of galvanisedsteel substrates, Progress in Organic Coatings, 63 (2008)330-337.
  • [81] M.F. Montemor, M.G.S. Ferreira, Cerium salt activatednanoparticles as fillers for silane films: Evaluation of thecorrosion inhibition performance on galvanised steelsubstrates, Electrochimica Acta, 52 (2007) 6976-6987.[Crossref]
  • [82] C. Motte, M. Poelman, A. Roobroeck, M. Fedel, F. Deflorian,M.G. Olivier, Improvement of corrosion protection offeredto galvanized steel by incorporation of lanthanide modifiednanoclays in silane layer, Progress in Organic Coatings, 74(2012) 326-333.
  • [83] D. Snihirova, S.V. Lamaka, M.F. Montemor, “SMART”protective ability of water based epoxy coatings loaded withCaCO3 microbeads impregnated with corrosion inhibitorsapplied on AA2024 substrates, Electrochimica Acta, 83(2012) 439-447.
  • [84] S.K. Poznyak, J. Tedim, L.M. Rodrigues, A.N. Salak, M.L.Zheludkevich, L.F.P. Dick, M.G.S. Ferreira, Novel InorganicHost Layered Double Hydroxides Intercalated with GuestOrganic Inhibitors for Anticorrosion Applications, ACSApplied Materials & Interfaces, 1 (2009) 2353-2362.[Crossref]
  • [85] J. Tedim, S.K. Poznyak, A. Kuznetsova, D. Raps, T. Hack,M.L. Zheludkevich, M.G.S. Ferreira, Enhancement of ActiveCorrosion Protection via Combination of Inhibitor-LoadedNanocontainers, ACS Applied Materials & Interfaces, 2(2010) 1528-1535.[Crossref]
  • [86] M.L. Zheludkevich, S.K. Poznyak, L.M. Rodrigues, D. Raps,T. Hack, L.F. Dick, T. Nunes, M.G.S. Ferreira, Active protectioncoatings with layered double hydroxide nanocontainers ofcorrosion inhibitor, Corrosion Science, 52 (2010) 602-611.[Crossref]
  • [87] M.F. Montemor, D.V. Snihirova, M.G. Taryba, S.V. Lamaka,I.A. Kartsonakis, A.C. Balaskas, G.C. Kordas, J. Tedim, A.Kuznetsova, M.L. Zheludkevich, M.G.S. Ferreira, Evaluationof self-healing ability in protective coatings modified withcombinations of layered double hydroxides and ceriummolibdate nanocontainers filled with corrosion inhibitors,Electrochimica Acta, 60 (2012) 31-40.[Crossref]
  • [88] J. Tedim, A. Kuznetsova, A.N. Salak, F. Montemor, D.Snihirova, M. Pilz, M.L. Zheludkevich, M.G.S. Ferreira, Zn–Al layered double hydroxides as chloride nanotraps in activeprotective coatings, Corrosion Science, 55 (2012) 1-4.[Crossref]
  • [89] I.A. Kartsonakis, A.C. Balaskas, E.P. Koumoulos, C.A. Charitidis,G. Kordas, Evaluation of corrosion resistance of magnesiumalloy ZK10 coated with hybrid organic–inorganic film includingcontainers, Corrosion Science, 65 (2012) 481-493.
  • [90] E.D. Mekeridis, I.A. Kartsonakis, G.C. Kordas, Multilayerorganic-inorganic coating incorporating TiO2 nanocontainersloaded with inhibitors for corrosion protection of AA2024-T3,Progress in Organic Coatings, 73 (2012) 142-148.
  • [91] D. Borisova, H. Mohwald, D.G. Shchukin, Mesoporous SilicaNanoparticles for Active Corrosion Protection, ACS Nano, 5(2011) 1939-1946.[Crossref]
  • [92] D. Borisova, H. Möhwald, D.G. Shchukin, Influence ofEmbedded Nanocontainers on the Efficiency of Active Anticorrosive Coatings for Aluminum Alloys Part I: Influenceof Nanocontainer Concentration, ACS Applied Materials &Interfaces, 4 (2012) 2931-2939.[Crossref]
  • [93] M.L. Zheludkevich, J. Tedim, M.G.S. Ferreira, “Smart”coatings for active corrosion protection based on multifunctionalmicro and nanocontainers, Electrochimica Acta,82 (2012) 314-323.[Crossref]
  • [94] Y.M. Lvov, D.G. Shchukin, H. Mohwald, R.R. Price, HalloysiteClay Nanotubes for Controlled Release of Protective Agents,ACS Nano, 2 (2008) 814-820.[Crossref]
  • [95] D.G. Shchukin, S.V. Lamaka, K.A. Yasakau, M.L.Zheludkevich, M.G.S. Ferreira, H. Mohwald, ActiveAnticorrosion Coatings with Halloysite Nanocontainers, TheJournal of Physical Chemistry C, 112 (2008) 958-964.
  • [96] D. Fix, D.V. Andreeva, Y.M. Lvov, D.G. Shchukin, H. Möhwald,Application of Inhibitor-Loaded Halloysite Nanotubes in ActiveAnti-Corrosive Coatings, Advanced Functional Materials, 19(2009) 1720-1727.
  • [97] D.G. Shchukin. Y.M. Lvov, H. Mohwald, R.R. Price, HalloysiteClay Nanotubes for Controlled Release of Protective Agents,ACS Nano, 2 (2008) 814-820.[Crossref]
  • [98] E.V. Skorb, D. Fix, D.V. Andreeva, H. Möhwald, D.G.Shchukin, Surface-Modified Mesoporous SiO2 Containersfor Corrosion Protection, Advanced Functional Materials, 19(2009) 2373-2379.
  • [99] S.V. Lamaka, M.L. Zheludkevich, K.A. Yasakau, M.F.Montemor, P. Ceciio, M..G.S. Ferreira, TiOx self-assemblednetworks prepared by templating approach as nanostructuredreservoirs for self-healing anticorrosion pre-treatments,Electrochemistry Communications, 8 (2006) 421-428.[Crossref]
  • [100] D. Álvarez, A. Collazo, M. Hernández, X.R. Nóvoa, C. Pérez,Characterization of hybrid sol-gel coatings doped withhydrotalcite-like compounds to improve corrosion resistance of AA2024-T3 alloys, Progress in Organic Coatings, 68(2010) 91-99.
  • [101] J. Canadell, H. Goossens, B. Klumperman, Self-HealingMaterials Based on Disulfide Links, Macromolecules, 44(2011) 2536-2541.[Crossref]
  • [102] U. Lafont, H. van Zeijl, S. van der Zwaag, Influence of crosslinkingon the cohesive and adhesive self-healing ability ofpolysulfide based thermosets, ACS Applied Materials &Interfaces (2012).[Crossref]
  • [103] V.V. Rajan, W.K. Dierkes, R. Joseph, J.W.M. Noordermeer,Science and technology of rubber reclamation with specialattention to NR-based waste latex products, Progress inPolymer Science, 31 (2006) 811-834.
  • [104] J. Kamada, K. Koynov, C. Corten, A. Juhari, J.A. Yoon, M.W.Urban, A.C. Balazs, K. Matyjaszewski, Redox ResponsiveBehavior of Thiol/Disulfide-Functionalized Star PolymersSynthesized via Atom Transfer Radical Polymerization,Macromolecules, 43 (2010) 4133-4139.[Crossref]
  • [105] E. Shouji, N. Oyama, Examination of the cleavage andformation of the disulfide bond in poly[dithio-2,5-(1,3,4-thiadiazole)] by redox reaction, Journal of ElectroanalyticalChemistry, 410 (1996) 229-234.
  • [106] S. Kim, I.J. Chung, pH effect on the electrochemical redoxreaction of disulfide with polyaniline film electrode in organicsolution, Synthetic Metals, 96 (1998) 213-221.[Crossref]
  • [107] H. Otsuka, S. Nagano, Y. Kobashi, T. Maeda, A. Takahara,A dynamic covalent polymer driven by disulfide metathesisunder photoirradiation, Chemical Communications, 46(2010) 1150-1152.[Crossref]
  • [108] M. Abolah Zadeh, S.J. Garcia, S. van der Zwaag, Sol-GelBased Intrinsic Sel-Healing Polymers, in: 8th CoatingsScience International, Noordwijk, The Netherlands, 2012, pp.52.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.