PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 1 | 1-18
Article title

Routes to extrinsic and intrinsic self-healing corrosion
protective sol-gel coatings: a review

Content
Title variants
Languages of publication
EN
Abstracts
EN
Sol-gel pre-treatments and coatings are an important class of passive
protective coatings, which can effectively prevent corrosion of various
metallic substrates through adhesion improvement and barrier protection.
Recently, sol-gel chemistry has been proposed as an appropriate method
for implementation of self-healing functionality in coatings via extrinsic
concepts. In this review we will analyze the most relevant existing works
on self-healing sol-gel coatings, including new work done in the direction of
implementing intrinsic healing capabilities to sol-gels. The development of
active sol-gel coatings is due to the broad chemical versatility of precursors
and low processing temperature of this type of chemistry.
Publisher

Year
Volume
1
Pages
1-18
Physical description
Dates
accepted
07 - 04 - 2013
received
18 - 1 - 2013
online
19 - 06 - 2013
Contributors
  • Novel Aerospace Materials Group,
    Department of Aerospace Materials and
    Manufacturing, Faculty of Aerospace
    Engineering, Delft University of
    Technology, Kluyverweg 1, 2629 HS,
    Delft, The Netherlands, m.abdolahzadeh@tudelft.nl
  • Novel Aerospace Materials Group,
    Department of Aerospace Materials and
    Manufacturing, Faculty of Aerospace
    Engineering, Delft University of
    Technology, Kluyverweg 1, 2629 HS,
    Delft, The Netherlands
author
  • Novel Aerospace Materials Group,
    Department of Aerospace Materials and
    Manufacturing, Faculty of Aerospace
    Engineering, Delft University of
    Technology, Kluyverweg 1, 2629 HS,
    Delft, The Netherlands
References
  • [1] M.G. Fontana, Corrosion Engineering, 3rd ed., Hill InternationalEditions Series in Material Science and Engineering,Singapore, 1987.
  • [2] A.W. Peabody, Peabody’s Control of Pipeline Corrosion, 2nded., NACE International The Corrosion Society, Houston,Texas, 2001.
  • [3] A.S. Khanna, Nanotechnology in High Performance PaintCoatings, Asian J. Exp. Sci., 21 (2008) 25-32.
  • [4] A. Akshay, Environmentally-Compliant Novolac Superprimersfor Corrosion Protection of Aluminum Alloys, in: MaterialsScience and Engineering University of Cincinnati 2006, pp. 204.
  • [5] S.J. García, J.M.C. Mol, T.H. Muster, A.E. Hughes, T.M.J. Mardel, H.T. T. Markely, J.H.W.d. Wit, Advances in theselection and use of rare-earth based inhibitors for selfhealingorganic coatings, in: Self-Healing Properties ofNew Surface Treatments, European Federation of CorrosionSeries, Maney Publishing, UK, 2011, pp. 148–183.
  • [6] M.L. Zheludkevich, I.M. Salvado, M.G.S. Ferreira, Solgelcoatings for corrosion protection of metals, Journal ofMaterials Chemistry, 15 (2005) 5099-5111.[Crossref]
  • [7] D. Wang, G.P. Bierwagen, Sol-gel coatings on metals for corrosionprotection, Progress in Organic Coatings, 64 (2009) 327-338.
  • [8] C.J. Brinker, G.W. Scherer, Sol-Gel Science: The Physicsand Chemistry of Sol Gel Processing, Academic Press, INC.,1990.
  • [9] M. Niederberger, N. Pinna, Aqueous and Nonaqueous Sol-Gel Chemistry, in: Metal Oxide Nanoparticles in OrganicSolvents Synthesis, Formation, Assembly and Application,Springer-Verlag London Limited, 2009, pp. 7-18.
  • [10] A. Vioux, Nonhydrolytic Sol−Gel Routes to Oxides, Chemistryof Materials, 9 (1997) 2292-2299.
  • [11] L.L. Hench, J.K. West, The sol-gel process, ChemicalReviews, 90 (1990) 33-72.[Crossref]
  • [12] J.D. Wright, N.A.J.M. Sommerdijk, Sol-Gel Materials:Chemistry and Applications, Taylor & Francis Book Ltd, 2001.
  • [13] M. Guglielmi, Sol-gel coatings on metals, Journal of Sol-GelScience and Technology, 8 (1997) 443-449.
  • [14] R. Benthem, W. Ming, G. With, S. van der Zwaag, SelfHealing Polymer Coatings Self Healing Materials, in, SpringerNetherlands, 2008, pp. 139-159.
  • [15] S.J. Garcia, H.R. Fischer, S. van der Zwaag, A criticalappraisal of the potential of self healing polymeric coatings,Progress in Organic Coatings, 72 (2011) 211-221.
  • [16] L. Fedrizzi, Self-Healing Properties of New SurfaceTreatments, Maney Publishing, UK, 2011.
  • [17] S. van der Zwaag, Self-Healing Materials: An AlternativeApproach to 20 Centuries of Materials Science, Springer,Dordrecht, The Netherlands, 2007.
  • [18] S.K. Ghosh, Self-Healing Materials: Fundamentals, DesignStrategies, and Applications, Wiley-VCH 2009.
  • [19] M.L. Zheludkevich, D.G. Shchukin, K.A. Yasakau, H.Möhwald, M.G.S. Ferreira, Anticorrosion Coatings with Self-Healing Effect Based on Nanocontainers Impregnated withCorrosion Inhibitor, Chemistry of Materials, 19 (2007) 402-411.
  • [20] M.F. Montemor, M.G.S. Ferreira, A review on the useof nanostructured and functional organosilane coatingsmodified withcorrosion inhibitors as environmentally friendlypre-treatments for metallic substrates, in: W.F. L Fedrizzi,MF Montemor (Ed.) Self-Healing Properties of New SurfaceTreatments, UK, 2011.
  • [21] W.J. van Ooij, D. Zhu, M. Stacy, A. Seth, T. Mugada, J.Gandhi, P. Puomi, Corrosion Protection Properties ofOrganofunctional Silanes-An Overview, Tsinghua Science &;Technology, 10 (2005) 639-664.[Crossref]
  • [22] S. Zheng, J. Li, Inorganic-organic sol gel hybrid coatings forcorrosion protection of metals, Journal of Sol-Gel Scienceand Technology, 54 (2010) 174-187.
  • [23] J. Wen, G.L. Wilkes, Organic/Inorganic Hybrid NetworkMaterials by the Sol-Gel Approach, Chemistry of Materials, 8(1996) 1667-1681.
  • [24] Y. Liu, D. Sun, H. You, J.S. Chung, Corrosion resistanceproperties of organic-inorganic hybrid coatings on 2024aluminum alloy, Applied Surface Science, 246 (2005) 82-89.
  • [25] K.M. S. Meera, R. M. Sankar, S.N. Jaisankar, A.B. Mandal,Physicochemical Studies on Polyurethane/Siloxane Cross-Linked Films for Hydrophobic Surfaces by the Sol–Gel Process, The Journal of Physical Chemistry B, 117 (2013)2682-2694.
  • [26] T.L. Metroke, E.T. Knobbe, Crosslinked organic–inorganichybrid thin films for corrosion resistance: spectroscopicand salt spray characterization, in: Materials researchsociety symposium, San Francisco, 2000, pp. CC11.14.11–CC11.14.16.
  • [27] K.J. Croes, A.J. Vreugdenhil, M. Yan, T.A. Singleton, S. Boraas,V.J. Gelling, An electrochemical study of corrosion protectionby in situ oxidative polymerization in phenylenediaminecrosslinked sol-gel hybrid coatings, Electrochimica Acta, 56(2011) 7796-7804.[Crossref]
  • [28] A.N. Khramov, V.N. Balbyshev, N.N. Voevodin, M.S. Donley,Nanostructured sol-gel derived conversion coatings basedon epoxy- and amino-silanes, Progress in Organic Coatings,47 (2003) 207-213.
  • [29] E. Roussi, A. Tsetsekou, D. Tsiourvas, A. Karantonis, Novelhybrid organo-silicate corrosion resistant coatings based onhyperbranched polymers, Surface and Coatings Technology,205 (2011) 3235-3244.
  • [30] A.J. Vreugdenhil, V.J. Gelling, M.E. Woods, J.R. Schmelz,B.P. Enderson, The role of crosslinkers in epoxy-aminecrosslinked silicon sol-gel barrier protection coatings, ThinSolid Films, 517 (2008) 538-543.[Crossref]
  • [31] T. Metroke, O. Kachurina, E. Knobbe, Electrochemical andsalt spray analysis of multilayer ormosil/conversion coatingsystems for the corrosion resistance of 2024-T3 aluminumalloys, Journal of Coatings Technology, 74 (2002) 53-61.
  • [32] M. Sheffer, A. Groysman, D. Mandler, Electrodepositionof sol-gel films on Al for corrosion protection, CorrosionScience, 45 (2003) 2893-2904.[Crossref]
  • [33] M. Sheffer, A. Groysman, D. Starosvetsky, N. Savchenko, D.Mandler, Anion embedded sol-gel films on Al for corrosionprotection, Corrosion Science, 46 (2004) 2975-2985.[Crossref]
  • [34] Y. Joshua Du, M. Damron, G. Tang, H. Zheng, C.J. Chu,J.H. Osborne, Inorganic/organic hybrid coatings for aircraftaluminum alloy substrates, Progress in Organic Coatings, 41(2001) 226-232.
  • [35] M. Ochi, R. Takahashi, Phase structure and thermomechanicalproperties of primary and tertiary amine-cured epoxy/silicahybrids, Journal of Polymer Science Part B: Polymer Physics,39 (2001) 1071-1084.[Crossref]
  • [36] S. Turri, L. Torlaj, F. Piccinini, M. Levi, Abrasion andnanoscratch in nanostructured epoxy coatings, Journal ofApplied Polymer Science, 118 (2010) 1720-1727.
  • [37] T. Nazir, A. Afzal, H. Siddiqi, S. Saeed, M. Dumon, Theinfluence of temperature and interface strength on themicrostructure and performance of sol–gel silica–epoxynanocomposites, Polymer Bulletin, 67 (2011) 1539-1551.[Crossref]
  • [38] X. Yan, G. Xu, Influence of silane coupling agent on corrosionresistantproperty in low infrared emissivity Cu/polyurethanecoating, Progress in Organic Coatings, 73 (2012) 232-238.
  • [39] Z. Luo, R.Y. Hong, H.D. Xie, W.G. Feng, One-step synthesis offunctional silica nanoparticles for reinforcement of polyurethanecoatings, Powder Technology, 218 (2012) 23-30.[Crossref]
  • [40] D. Kim, K. Jeon, Y. Lee, J. Seo, K. Seo, H. Han, S. Khan,Preparation and characterization of UV-cured polyurethaneacrylate/ZnO nanocomposite films based on surface modifiedZnO, Progress in Organic Coatings, 74 (2012) 435-442.
  • [41] A.K. Mishra, R. Narayan, T.M. Aminabhavi, S.K. Pradhan,K.V.S.N. Raju, Hyperbranched polyurethane-urea-imide/oclay-silica hybrids: Synthesis and characterization, Journal ofApplied Polymer Science, 125 (2012) E67-E75.[Crossref]
  • [42] S.H. Cho, S.R. White, P.V. Braun, Self-Healing PolymerCoatings, Advanced Materials, 21 (2009) 645-649.[Crossref]
  • [43] S.J. García, H.R. Fischer, P.A. White, J. Mardel, Y. González-García, A.E.H. J.M.C. Mol, Self-healing anticorrosive organiccoating based on an encapsulated water reactive SilylEster: synthesis and proof of concept, Progress in OrganicCoatings, 70 (2011) 142-149.
  • [44] J. Mardel, S.J. Garcia, P.A. Corrigan, T. Markley, A.E.Hughes, T.H. Muster, D. Lau, T.G. Harvey, A.M. Glenn, P.A.White, S.G. Hardin, X.Z. C. Luo, G.E. Thompson, J.M.C. Mol,The Characterisation and Performance of Ce(dbp)3-InhibitedEpoxy Coatings, Progress in Organic Coatings , 70 (2011)90-101.
  • [45] N. Pirhady Tavandashti, S. Sanjabi, T. Shahrabi, Evolution ofcorrosion protection performance of hybrid silica based sol–gel nanocoatings by doping inorganic inhibitor, Materials andCorrosion, 62 (2011) 411-415.[Crossref]
  • [46] W. Trabelsi, E. Triki, L. Dhouibi, M.G.S. Ferreira, M.L.Zheludkevich, M.F. Montemor, The use of pre-treatmentsbased on doped silane solutions for improved corrosionresistance of galvanised steel substrates, Surface andCoatings Technology, 200 (2006) 4240-4250.
  • [47] M.F. Montemor, W. Trabelsi, M. Zheludevich, M.G.S. Ferreira,Modification of bis-silane solutions with rare-earth cations forimproved corrosion protection of galvanized steel substrates,Progress in Organic Coatings, 57 (2006) 67-77.
  • [48] L.-K. Wu, J.-M. Hu, J.-Q. Zhang, Electrodeposition of zincdopedsilane films for corrosion protection of mild steels,Corrosion Science, 59 (2012) 348-351.[Crossref]
  • [49] W. Trabelsi, P. Cecilio, M.G.S. Ferreira, M.F. Montemor,Electrochemical assessment of the self-healing properties ofCe-doped silane solutions for the pre-treatment of galvanisedsteel substrates, Progress in Organic Coatings, 54 (2005)276-284.
  • [50] M. Garcia-Heras, A. Jimenez-Morales, B. Casal, J.C. Galvan,S. Radzki, M.A. Villegas, Preparation and electrochemicalstudy of cerium-silica sol-gel thin films, Journal of Alloys andCompounds, 380 (2004) 219-224.
  • [51] R. Zandi Zand, K. Verbeken, A. Adriaens, Corrosion resistanceperformance of cerium doped silica sol–gel coatings on 304Lstainless steel, Progress in Organic Coatings, 75 (2012) 463-473.
  • [52] E. Certhoux, F. Ansart, V. Turq, J.P. Bonino, J.M. Sobrino,J. Garcia, J. Reby, New sol–gel formulations to increase thebarrier effect of a protective coating against the corrosionof steels, Progress in Organic Coatings, 76 (2013) 165-172.
  • [53] J.-B. Cambon, F. Ansart, J.-P. Bonino, V. Turq, Effect of ceriumconcentration on corrosion resistance and polymerization ofhybrid sol–gel coating on martensitic stainless steel, Progressin Organic Coatings, 75 (2012) 486-493.
  • [54] A. Pepe, M. Aparicio, A. Duran, S. Cere, Cerium hybrid silicacoatings on stainless steel AISI 304 substrate, Journal of Sol-Gel Science and Technology, 39 (2006) 131-138.
  • [55] P.H. Suegama, H.G. de Melo, A.V. Benedetti, I.V. Aoki,Influence of cerium (IV) ions on the mechanism of organosilanepolymerization and on the improvement of its barrier properties,Electrochimica Acta, 54 (2009) 2655-2662.[Crossref]
  • [56] V. Palanivel, Y. Huang, W.J. van Ooij, Effects of addition ofcorrosion inhibitors to silane films on the performance ofAA2024-T3 in a 0.5 M NaCl solution, Progress in OrganicCoatings, 53 (2005) 153-168.
  • [57] A. Cabral, R.G. Duarte, M.F. Montemor, M.L. Zheludkevich,M.G.S. Ferreira, Analytical characterisation and corrosionbehaviour of bis-[triethoxysilylpropyl]tetrasulphide pre-treatedAA2024-T3, Corrosion Science, 47 (2005) 869-881.
  • [58] R.V. Lakshmi, G. Yoganandan, K.T. Kavya, B.J. Basu,Effective corrosion inhibition performance of Ce3+ dopedsol–gel nanocomposite coating on aluminum alloy, Progressin Organic Coatings, 76 (2013) 367-374.
  • [59] N.N. Voevodin, N.T. Grebasch, W.S. Soto, F.E. Arnold, M.S.Donley, Potentiodynamic evaluation of sol-gel coatings withinorganic inhibitors, Surface and Coatings Technology, 140(2001) 24-28.
  • [60] H. Shi, F. Liu, E. Han, Corrosion behaviour of sol-gel coatingsdoped with cerium salts on 2024-T3 aluminum alloy, MaterialsChemistry and Physics, 124 (2010) 291-297.
  • [61] S. Kozhukharov, V. Kozhukharov, M. Schem, M. Aslan, M.Wittmar, A. Wittmar, M. Veith, Protective ability of hybridnano-composite coatings with cerium sulphate as inhibitoragainst corrosion of AA2024 aluminium alloy, Progress inOrganic Coatings, 73 (2012) 95-103.
  • [62] N.C. Rosero-Navarro, L. Paussa, F. Andreatta, Y. Castro, A.Durán, M. Aparicio, L. Fedrizzi, Optimization of hybrid solgelcoatings by combination of layers with complementaryproperties for corrosion protection of AA2024, Progress inOrganic Coatings, 69 (2010) 167-174.
  • [63] F. Andreatta, L. Paussa, P. Aldighieri, A. Lanzutti, D. Raps, L.Fedrizzi, Corrosion behaviour of sol-gel treated and paintedAA2024 aluminium alloy, Progress in Organic Coatings, 69(2010) 133-142.
  • [64] L. Paussa, N.C. Rosero Navarro, D. Bravin, F. Andreatta,A. Lanzutti, M. Aparicio, A. Duran, L. Fedrizzi, ZrO2 sol-gelpre-treatments doped with cerium nitrate for the corrosionprotection of AA6060, Progress in Organic Coatings, 74(2012) 311-319.
  • [65] T. Sugama, Cerium acetate-modified aminopropylsilane triol:A precursor of corrosion-preventing coating for aluminumfinnedcondensers, Journal of Coatings Technology andResearch, 2 (2005) 649-659.
  • [66] M.F. Montemor, M.G.S. Ferreira, Electrochemical study ofmodified bis-[triethoxysilylpropyl] tetrasulfide silane films applied on the AZ31 Mg alloy, Electrochimica Acta, 52 (2007)7486-7495.[Crossref]
  • [67] A.J. Vreugdenhil, M.E. Woods, Triggered release of molecularadditives from epoxy-amine sol-gel coatings, Progress inOrganic Coatings, 53 (2005) 119-125.
  • [68] A.N. Khramov, V.N. Balbyshev, L.S. Kasten, R.A. Mantz,Sol–gel coatings with phosphonate functionalities for surfacemodification of magnesium alloys, Thin Solid Films, 514(2006) 174-181.[Crossref]
  • [69] S.V. Lamaka, M.F. Montemor, A.F. Galio, M.L. Zheludkevich,C. Trindade, L.F. Dick, M.G.S. Ferreira, Novel hybrid sol–gelcoatings for corrosion protection of AZ31B magnesium alloy,Electrochimica Acta, 53 (2008) 4773-4783.[Crossref]
  • [70] V. Dalmoro, J. dos Santos, D. Azambuja, Corrosion behavior ofAA2024-T3 alloy treated with phosphonate-containing TEOS,Journal of Solid State Electrochemistry, 16 (2012) 403-414.
  • [71] A.N. Khramov, N.N. Voevodin, V.N. Balbyshev, M.S. Donley,Hybrid organo-ceramic corrosion protection coatings withencapsulated organic corrosion inhibitors, Thin Solid Films,447-448 (2004) 549-557.
  • [72] A.N. Khramov, N.N. Voevodin, V.N. Balbyshev, R.A.Mantz, Sol-gel-derived corrosion-protective coatings withcontrollable release of incorporated organic corrosioninhibitors, Thin Solid Films, 483 (2005) 191-196.[Crossref]
  • [73] M. Quinet, B. Neveu, V. Moutarlier, P. Audebert, L. Ricq,Corrosion protection of sol-gel coatings doped with anorganic corrosion inhibitor: Chloranil, Progress in OrganicCoatings, 58 (2007) 46-53.
  • [74] V. Palanivel, D. Zhu, W.J. van Ooij, Nanoparticle-filledsilane films as chromate replacements for aluminum alloys,Progress in Organic Coatings, 47 (2003) 384-392.
  • [75] E. Gonzalez, J. Pavez, I. Azocar, J.H. Zagal, X. Zhou, F. Melo,G.E. Thompson, M.A. Páez, A silanol-based nanocompositecoating for protection of AA-2024 aluminium alloy,Electrochimica Acta, 56 (2011) 7586-7595.[Crossref]
  • [76] P.H. Suegama, H.G. de Melo, A.A.C. Recco, A.P.Tschiptschin, I.V. Aoki, Corrosion behavior of carbon steelprotected with single and bi-layer of silane films filled withsilica nanoparticles, Surface and Coatings Technology, 202(2008) 2850-2858.
  • [77] M.L. Zheludkevich, R. Serra, M.F. Montemor, K.A. Yasakau,I.M.M. Salvado, M.G.S. Ferreira, Nanostructured sol-gelcoatings doped with cerium nitrate as pre-treatmentsfor AA2024-T3: Corrosion protection performance,Electrochimica Acta, 51 (2005) 208-217.
  • [78] M.L. Zheludkevich, R. Serra, M.F. Montemor, I.M.M.Salvado, M.G.S. Ferreira, Corrosion protective propertiesof nanostructured sol-gel hybrid coatings to AA2024-T3,Surface and Coatings Technology, 200 (2006) 3084-3094.
  • [79] N. Pirhady Tavandashti,, S. Sanjabi, Corrosion study of hybridsol-gel coatings containing boehmite nanoparticles loadedwith cerium nitrate corrosion inhibitor, Progress in OrganicCoatings, 69 (2010) 384-391.
  • [80] M.F. Montemor, M.G.S. Ferreira, Analytical characterizationof silane films modified with cerium activated nanoparticles and its relation with the corrosion protection of galvanisedsteel substrates, Progress in Organic Coatings, 63 (2008)330-337.
  • [81] M.F. Montemor, M.G.S. Ferreira, Cerium salt activatednanoparticles as fillers for silane films: Evaluation of thecorrosion inhibition performance on galvanised steelsubstrates, Electrochimica Acta, 52 (2007) 6976-6987.[Crossref]
  • [82] C. Motte, M. Poelman, A. Roobroeck, M. Fedel, F. Deflorian,M.G. Olivier, Improvement of corrosion protection offeredto galvanized steel by incorporation of lanthanide modifiednanoclays in silane layer, Progress in Organic Coatings, 74(2012) 326-333.
  • [83] D. Snihirova, S.V. Lamaka, M.F. Montemor, “SMART”protective ability of water based epoxy coatings loaded withCaCO3 microbeads impregnated with corrosion inhibitorsapplied on AA2024 substrates, Electrochimica Acta, 83(2012) 439-447.
  • [84] S.K. Poznyak, J. Tedim, L.M. Rodrigues, A.N. Salak, M.L.Zheludkevich, L.F.P. Dick, M.G.S. Ferreira, Novel InorganicHost Layered Double Hydroxides Intercalated with GuestOrganic Inhibitors for Anticorrosion Applications, ACSApplied Materials & Interfaces, 1 (2009) 2353-2362.[Crossref]
  • [85] J. Tedim, S.K. Poznyak, A. Kuznetsova, D. Raps, T. Hack,M.L. Zheludkevich, M.G.S. Ferreira, Enhancement of ActiveCorrosion Protection via Combination of Inhibitor-LoadedNanocontainers, ACS Applied Materials & Interfaces, 2(2010) 1528-1535.[Crossref]
  • [86] M.L. Zheludkevich, S.K. Poznyak, L.M. Rodrigues, D. Raps,T. Hack, L.F. Dick, T. Nunes, M.G.S. Ferreira, Active protectioncoatings with layered double hydroxide nanocontainers ofcorrosion inhibitor, Corrosion Science, 52 (2010) 602-611.[Crossref]
  • [87] M.F. Montemor, D.V. Snihirova, M.G. Taryba, S.V. Lamaka,I.A. Kartsonakis, A.C. Balaskas, G.C. Kordas, J. Tedim, A.Kuznetsova, M.L. Zheludkevich, M.G.S. Ferreira, Evaluationof self-healing ability in protective coatings modified withcombinations of layered double hydroxides and ceriummolibdate nanocontainers filled with corrosion inhibitors,Electrochimica Acta, 60 (2012) 31-40.[Crossref]
  • [88] J. Tedim, A. Kuznetsova, A.N. Salak, F. Montemor, D.Snihirova, M. Pilz, M.L. Zheludkevich, M.G.S. Ferreira, Zn–Al layered double hydroxides as chloride nanotraps in activeprotective coatings, Corrosion Science, 55 (2012) 1-4.[Crossref]
  • [89] I.A. Kartsonakis, A.C. Balaskas, E.P. Koumoulos, C.A. Charitidis,G. Kordas, Evaluation of corrosion resistance of magnesiumalloy ZK10 coated with hybrid organic–inorganic film includingcontainers, Corrosion Science, 65 (2012) 481-493.
  • [90] E.D. Mekeridis, I.A. Kartsonakis, G.C. Kordas, Multilayerorganic-inorganic coating incorporating TiO2 nanocontainersloaded with inhibitors for corrosion protection of AA2024-T3,Progress in Organic Coatings, 73 (2012) 142-148.
  • [91] D. Borisova, H. Mohwald, D.G. Shchukin, Mesoporous SilicaNanoparticles for Active Corrosion Protection, ACS Nano, 5(2011) 1939-1946.[Crossref]
  • [92] D. Borisova, H. Möhwald, D.G. Shchukin, Influence ofEmbedded Nanocontainers on the Efficiency of Active Anticorrosive Coatings for Aluminum Alloys Part I: Influenceof Nanocontainer Concentration, ACS Applied Materials &Interfaces, 4 (2012) 2931-2939.[Crossref]
  • [93] M.L. Zheludkevich, J. Tedim, M.G.S. Ferreira, “Smart”coatings for active corrosion protection based on multifunctionalmicro and nanocontainers, Electrochimica Acta,82 (2012) 314-323.[Crossref]
  • [94] Y.M. Lvov, D.G. Shchukin, H. Mohwald, R.R. Price, HalloysiteClay Nanotubes for Controlled Release of Protective Agents,ACS Nano, 2 (2008) 814-820.[Crossref]
  • [95] D.G. Shchukin, S.V. Lamaka, K.A. Yasakau, M.L.Zheludkevich, M.G.S. Ferreira, H. Mohwald, ActiveAnticorrosion Coatings with Halloysite Nanocontainers, TheJournal of Physical Chemistry C, 112 (2008) 958-964.
  • [96] D. Fix, D.V. Andreeva, Y.M. Lvov, D.G. Shchukin, H. Möhwald,Application of Inhibitor-Loaded Halloysite Nanotubes in ActiveAnti-Corrosive Coatings, Advanced Functional Materials, 19(2009) 1720-1727.
  • [97] D.G. Shchukin. Y.M. Lvov, H. Mohwald, R.R. Price, HalloysiteClay Nanotubes for Controlled Release of Protective Agents,ACS Nano, 2 (2008) 814-820.[Crossref]
  • [98] E.V. Skorb, D. Fix, D.V. Andreeva, H. Möhwald, D.G.Shchukin, Surface-Modified Mesoporous SiO2 Containersfor Corrosion Protection, Advanced Functional Materials, 19(2009) 2373-2379.
  • [99] S.V. Lamaka, M.L. Zheludkevich, K.A. Yasakau, M.F.Montemor, P. Ceciio, M..G.S. Ferreira, TiOx self-assemblednetworks prepared by templating approach as nanostructuredreservoirs for self-healing anticorrosion pre-treatments,Electrochemistry Communications, 8 (2006) 421-428.[Crossref]
  • [100] D. Álvarez, A. Collazo, M. Hernández, X.R. Nóvoa, C. Pérez,Characterization of hybrid sol-gel coatings doped withhydrotalcite-like compounds to improve corrosion resistance of AA2024-T3 alloys, Progress in Organic Coatings, 68(2010) 91-99.
  • [101] J. Canadell, H. Goossens, B. Klumperman, Self-HealingMaterials Based on Disulfide Links, Macromolecules, 44(2011) 2536-2541.[Crossref]
  • [102] U. Lafont, H. van Zeijl, S. van der Zwaag, Influence of crosslinkingon the cohesive and adhesive self-healing ability ofpolysulfide based thermosets, ACS Applied Materials &Interfaces (2012).[Crossref]
  • [103] V.V. Rajan, W.K. Dierkes, R. Joseph, J.W.M. Noordermeer,Science and technology of rubber reclamation with specialattention to NR-based waste latex products, Progress inPolymer Science, 31 (2006) 811-834.
  • [104] J. Kamada, K. Koynov, C. Corten, A. Juhari, J.A. Yoon, M.W.Urban, A.C. Balazs, K. Matyjaszewski, Redox ResponsiveBehavior of Thiol/Disulfide-Functionalized Star PolymersSynthesized via Atom Transfer Radical Polymerization,Macromolecules, 43 (2010) 4133-4139.[Crossref]
  • [105] E. Shouji, N. Oyama, Examination of the cleavage andformation of the disulfide bond in poly[dithio-2,5-(1,3,4-thiadiazole)] by redox reaction, Journal of ElectroanalyticalChemistry, 410 (1996) 229-234.
  • [106] S. Kim, I.J. Chung, pH effect on the electrochemical redoxreaction of disulfide with polyaniline film electrode in organicsolution, Synthetic Metals, 96 (1998) 213-221.[Crossref]
  • [107] H. Otsuka, S. Nagano, Y. Kobashi, T. Maeda, A. Takahara,A dynamic covalent polymer driven by disulfide metathesisunder photoirradiation, Chemical Communications, 46(2010) 1150-1152.[Crossref]
  • [108] M. Abolah Zadeh, S.J. Garcia, S. van der Zwaag, Sol-GelBased Intrinsic Sel-Healing Polymers, in: 8th CoatingsScience International, Noordwijk, The Netherlands, 2012, pp.52.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_shm-2013-0001
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.