PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 1 | 3-8
Article title

Wnt/β-catenin signaling for dental regeneration

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Emerging regenerative strategies are promising to cure the irreversible damages to dental tissues, but the success of these strategies is constrained by the lack of insight on the molecular cues of regeneration, while recent advancements on the molecular controls of development of dental tissues provided valuable clues for identifying potential regenerative cues. Wnt/β-catenin signaling pathway is highly conserved in animals and regulates the differentiation, proliferation, death and function of many cell and tissue types. This pathway is essential for morphogenesis and homeostasis of multiple oral organs, including teeth, taste buds, salivary glands and oral mucosa. Following injury, this pathway is activated in salivary glands and teeth, which contributes to repair or regeneration of damaged tissues. Consistently, activation of the Wnt/β-catenin signaling pathway in mice prevents radiation-induced damages or promotes regeneration of these dental tissues. In this review we discuss our current understanding and potential application of Wnt/β-catenin signaling in dental regeneration.
Publisher

Year
Volume
1
Pages
3-8
Physical description
Dates
published
1 - 1 - 2012
online
13 - 8 - 2012
Contributors
author
author
  • Institute for Regenerative Medicine at Scott & White, Molecular and Cellular Medicine Department, College of Medicine, Texas A&M Health Science Center, Texas, USA
References
  • Mikels AJ, Nusse R. Wnts as ligands: processing, secretion and reception. Oncogene 2006;25(57): 7461-8.[Crossref][PubMed]
  • Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 2006;281(32):22429-33.
  • Drees F, Pokutta S, Yamada S, Nelson WJ, Weis WI. Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell 2005;123(5):903-15.
  • Yamada S, Pokutta S, Drees F, Weis WI, Nelson WJ. Deconstructing the cadherin-catenin-actin complex. Cell 2005;123(5):889-901.
  • Liu C, Kato Y, Zhang Z, Do VM, Yankner BA, He X. beta-Trcp couples beta-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc Natl Acad Sci U S A 1999;96(11):6273-8.[Crossref]
  • Brocardo M, Henderson BR. APC shuttling to the membrane, nucleus and beyond. Trends Cell Biol 2008;18(12):587-96.[PubMed][Crossref]
  • Tolwinski NS, Wieschaus E. Rethinking WNT signaling. Trends Genet 2004;20(4):177-81.[PubMed][Crossref]
  • Fiedler M, Mendoza-Topaz C, Rutherford TJ, Mieszczanek J, Bienz M. Dishevelled interacts with the DIX domain polymerization interface of Axin to interfere with its function in down-regulating beta-catenin. Proc Natl Acad Sci U S A 2011;108(5):1937-42.[Crossref]
  • Taelman VF, Dobrowolski R, Plouhinec JL, Fuentealba LC, Vorwald PP, Gumper I, et al. Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell 2010;143(7):1136-48.
  • Li VS, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP, et al. Wnt Signaling through Inhibition of beta-Catenin Degradation in an Intact Axin1 Complex. Cell 2012;149(6):1245-56.
  • Kramps T, Peter O, Brunner E, Nellen D, Froesch B, Chatterjee S, et al. Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell 2002;109(1):47-60.[Crossref]
  • Bauer A, Chauvet S, Huber O, Usseglio F, Rothbacher U, Aragnol D, et al. Pontin52 and reptin52 function as antagonistic regulators of beta-catenin signalling activity. Embo J 2000;19(22):6121-30.[Crossref]
  • Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci 2003;116(Pt 13):2627-34.
  • Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 2002;22(4):1172-83.[Crossref][PubMed]
  • Niida A, Hiroko T, Kasai M, Furukawa Y, Nakamura Y, Suzuki Y, et al. DKK1, a negative regulator of Wnt signaling, is a target of the beta-catenin/TCF pathway. Oncogene 2004;23(52):8520-6.[PubMed][Crossref]
  • Caldwell GM, Jones CE, Taniere P, Warrack R, Soon Y, Matthews GM, et al. The Wnt antagonist sFRP1 is downregulated in premalignant large bowel adenomas. Br J Cancer 2006;94(6):922-7.[Crossref]
  • Goessling W, North TE, Loewer S, Lord AM, Lee S, Stoick-Cooper CL, et al. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 2009;136(6):1136-47.
  • He XC, Zhang J, Tong WG, Tawfik O, Ross J, Scoville DH, et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet 2004;36(10):1117-21.[PubMed][Crossref]
  • Liu F, Chu EY, Watt B, Zhang Y, Gallant NM, Andl T, et al. Wnt/beta-catenin signaling directs multiple stages of tooth morphogenesis. Dev Biol 2008;313(1):210-24.
  • Jarvinen E, Salazar-Ciudad I, Birchmeier W, Taketo MM, Jernvall J, Thesleff I. Continuous tooth generation in mouse is induced by activated epithelial Wnt/beta-catenin signaling. Proc Natl Acad Sci U S A 2006;103(49):18627-32.[Crossref]
  • Wang XP, O'Connell DJ, Lund JJ, Saadi I, Kuraguchi M, Turbe-Doan A, et al. Apc inhibition of Wnt signaling regulates supernumerary tooth formation during embryogenesis and throughout adulthood. Development 2009;136(11):1939-49.
  • Liu F, Dangaria S, Andl T, Zhang Y, Wright AC, Damek-Poprawa M, et al. beta-Catenin initiates tooth neogenesis in adult rodent incisors. J Dent Res 2010;89(9):909-14.[PubMed][Crossref]
  • Suomalainen M, Thesleff I. Patterns of Wnt pathway activity in the mouse incisor indicate absence of Wnt/beta-catenin signaling in the epithelial stem cells. Dev Dyn 2010;239(1):364-72.
  • Lohi M, Tucker AS, Sharpe PT. Expression of Axin2 indicates a role for canonical Wnt signaling in development of the crown and root during pre- and postnatal tooth development. Dev Dyn 2010;239(1):160-7.
  • Ling J, Du Y, Wei X, Ning Y, Xie N, Gu H, et al. Wnt/beta-catenin Signaling Participates in Cementoblast/Osteoblast Differentiation of Dental Follicle Cells. Connect Tissue Res 2012.[PubMed]
  • Han XL, Liu M, Voisey A, Ren YS, Kurimoto P, Gao T, et al. Post-natal effect of overexpressed DKK1 on mandibular molar formation. J Dent Res 2011;90(11):1312-7.[Crossref]
  • Kim TH, Lee JY, Baek JA, Lee JC, Yang X, Taketo MM, et al. Constitutive stabilization of ss-catenin in the dental mesenchyme leads to excessive dentin and cementum formation. Biochem Biophys Res Commun 2011;412(4):549-55.
  • Zhu Y, Shang L, Chen X, Kong X, Liu N, Bai Y, et al. Deciduous dental pulp stem cells are involved in osteoclastogenesis during physiologic root resorption. J Cell Physiol 2012.
  • Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest 2006;116(5):1202-9.
  • Galli C, Passeri G, Macaluso GM. FoxOs, Wnts and oxidative stress-induced bone loss: new players in the periodontitis arena? J Periodontal Res 2011;46(4):397-406.[PubMed][Crossref]
  • Almeida M, Han L, Martin-Millan M, O'Brien CA, Manolagas SC. Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor to forkhead box O-mediated transcription. J Biol Chem 2007;282(37):27298-305.
  • Stone LM, Finger TE, Tam PP, Tan SS. Taste receptor cells arise from local epithelium, not neurogenic ectoderm. Proc Natl Acad Sci U S A 1995;92(6):1916-20.[Crossref]
  • Barlow LA, Northcutt RG. Embryonic origin of amphibian taste buds. Dev Biol 1995;169(1):273-85.
  • Vandenbeuch A, Clapp TR, Kinnamon SC. Amiloride sensitive channels in type I fungiform taste cells in mouse. BMC Neurosci 2008;9:1.[Crossref][PubMed]
  • Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 2003;112(3):293-301.[PubMed][Crossref]
  • Kataoka S, Yang R, Ishimaru Y, Matsunami H, Sevigny J, Kinnamon JC, et al. The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse. Chem Senses 2008;33(3):243-54.[PubMed][Crossref]
  • Yang R, Ma H, Thomas SM, Kinnamon JC. Immunocytochemical analysis of syntaxin-1 in rat circumvallate taste buds. J Comp Neurol 2007;502(6):883-93.
  • Farbman AI. Renewal of taste bud cells in rat circumvallate papillae. Cell Tissue Kinet 1980;13(4):349-57.[PubMed]
  • Ichimori Y, Ueda K, Okada H, Honma S, Wakisaka S. Histochemical changes and apoptosis in degenerating taste buds of the rat circumvallate papilla. Arch Histol Cytol 2009;72(2):91-100.
  • Nguyen HM, Reyland ME, Barlow LA. Mechanisms of taste bud cell loss after head and neck irradiation. J Neurosci 2012;32(10):3474-84.[PubMed][Crossref]
  • Yamashita H, Nakagawa K, Hosoi Y, Kurokawa A, Fukuda Y, Matsumoto I, et al. Umami taste dysfunction in patients receiving radiotherapy for head and neck cancer. Oral Oncol 2009;45(3):e19-23.[Crossref][PubMed]
  • Liu F, Thirumangalathu S, Gallant NM, Yang SH, Stoick-Cooper CL, Reddy ST, et al. Wnt-beta-catenin signaling initiates taste papilla development. Nat Genet 2007;39(1):106-12.[Crossref][PubMed]
  • Iwatsuki K, Liu HX, Gronder A, Singer MA, Lane TF, Grosschedl R, et al. Wnt signaling interacts with Shh to regulate taste papilla development. Proc Natl Acad Sci U S A 2007;104(7):2253-8.[Crossref]
  • Okubo T, Pevny LH, Hogan BL. Sox2 is required for development of taste bud sensory cells. Genes Dev 2006;20(19):2654-9.
  • Gaillard D, Barlow LA. Taste bud cells of adult mice are responsive to Wnt/beta-catenin signaling: implications for the renewal of mature taste cells. Genesis 2011;49(4):295-306.[Crossref][PubMed]
  • Nederfors T. Xerostomia and hyposalivation. Adv Dent Res 2000;14:48-56.[PubMed][Crossref]
  • Konings AW, Coppes RP, Vissink A. On the mechanism of salivary gland radiosensitivity. Int J Radiat Oncol Biol Phys 2005;62(4):1187-94.[PubMed][Crossref]
  • Coppes RP, Stokman MA. Stem cells and the repair of radiation-induced salivary gland damage. Oral Dis 2011;17(2):143-53.[PubMed][Crossref]
  • Lombaert IM, Knox SM, Hoffman MP. Salivary gland progenitor cell biology provides a rationale for therapeutic salivary gland regeneration. Oral Dis 2011;17(5):445-9.[Crossref][PubMed]
  • Patel N, Sharpe PT, Miletich I. Coordination of epithelial branching and salivary gland lumen formation by Wnt and FGF signals. Dev Biol 2011;358(1):156-67.
  • Haara O, Fujimori S, Schmidt-Ullrich R, Hartmann C, Thesleff I, Mikkola ML. Ectodysplasin and Wnt pathways are required for salivary gland branching morphogenesis. Development 2011;138(13):2681-91.
  • Hai B, Yang Z, Millar SE, Choi YS, Taketo MM, Nagy A, et al. Wnt/beta-catenin signaling regulates postnatal development and regeneration of the salivary gland. Stem Cells Dev 2010;19(11):1793-801.[PubMed][Crossref]
  • Hai B, Yang Z, Shangguan L, Zhao Y, Boyer A, Liu F. Concurrent transient activation of Wnt/beta-catenin pathway prevents radiation damage to salivary glands. Int J Radiat Oncol Biol Phys 2012;83(1):e109-16.
  • Sonis ST. Oral mucositis in cancer therapy. J Support Oncol 2004;2(6 Suppl 3):3-8.
  • Treister NS, Lerman MA. Acute oral ulcerations. J Am Dent Assoc 2007;138(4):499-501.
  • Zhao J, Kim KA, De Vera J, Palencia S, Wagle M, Abo A. R-Spondin1 protects mice from chemotherapy or radiation induced oral mucositis through the canonical Wnt/beta-catenin pathway. Proc Natl Acad Sci U S A 2009;106(7):2331-6.
  • Binnerts ME, Kim KA, Bright JM, Patel SM, Tran K, Zhou M, et al. R-Spondin1 regulates Wnt signaling by inhibiting internalization of LRP6. Proc Natl Acad Sci U S A 2007;104(37):14700-5.
  • de Lau W, Barker N, Low TY, Koo BK, Li VS, Teunissen H, et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 2011;476(7360):293-7.
  • Castilho RM, Squarize CH, Chodosh LA, Williams BO, Gutkind JS. mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell 2009;5(3):279-89.[PubMed][Crossref]
  • Qiang YW, Hu B, Chen Y, Zhong Y, Shi B, Barlogie B, et al. Bortezomib induces osteoblast differentiation via Wnt-independent activation of beta-catenin/TCF signaling. Blood 2009;113(18):4319-30.[PubMed][Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_scom-2012-0002
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.