PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 2 | 1 |
Article title

Strategies to increase selectivity of analytical methods for As, Cr and Se speciation in biological samples: A review

Content
Title variants
Languages of publication
EN
Abstracts
EN
This review provides an overview and discusses different analytical strategies that minimize or eliminate the preparation of samples for speciation of organic and inorganic species of As, Cr and Se in samples of biological interest. These metals are important for the human body and the presence of various chemical forms of metals determines its essentiality and toxicity, thus speciation comes as an important tool for the study of biological samples. However, speciation requires a reduction in the steps of sample preparation, allowing a sample investigation in its most native form in order to reduce the changes in chemical species. The strategies proposed for speciation of these metals include: solid phase extraction, point cloud extraction, suspension and direct analysis. Selected methods proposed for the speciation of organic and inorganic species of As, Cr and Se were reviewed including their main figures of merit, advantages and disadvantages
Publisher

Year
Volume
2
Issue
1
Physical description
Dates
online
19 - 9 - 2014
accepted
24 - 4 - 2014
received
7 - 10 - 2013
Contributors
  • Institute of Chemistry,Federal University of Uberlandia, Av. Joao Naves de Avila 2121, CEP 38400-902, Uberlandia, MG, Brazil
  • Institute of Chemistry,Federal University of Uberlandia, Av. Joao Naves de Avila 2121, CEP 38400-902, Uberlandia, MG, Brazil, nmmcoelho@ufu.br
  • Department of Chemistry,Federal University of Goias, Av. Dr. Lamartine Pinto de Avelar, 1120, CEP 75704-020, Catalao, GO, Brazil
  • Institute of Chemistry,Federal University of Uberlandia, Av. Joao Naves de Avila 2121, CEP 38400-902, Uberlandia, MG, Brazil
author
  • Institute of Chemistry,Federal University of Uberlandia, Av. Joao Naves de Avila 2121, CEP 38400-902, Uberlandia, MG, Brazil
  • Department of Chemistry,Federal University of Goias, Av. Dr. Lamartine Pinto de Avelar, 1120, CEP 75704-020, Catalao, GO, Brazil
References
  • [1] Duffus J.H., Glossary for chemists of terms used in toxicology, Pure Appl. Chem., 1993, 65, 2003-2122.
  • [2] Buchet J.P., Arsenic speciation in human tissues, in: Cornelis R., Caruso J., Crews H., Heumman K., Handbook of Elemental Speciation II - Species in the Environment, Food, Medicine and Occupational Health, John Wiley & Sons, Inc., England, 2005, 86.
  • [3] Abdulah R., Miyazaki K., Nakazawa M., Koyama H., Chemical forms of selenium for cancer prevention, J. Trace Elem. Med. Biol., 2005, 19, 141-150.[Crossref]
  • [4] Apostoli P., The role of element speciation in environmental and occupational medicine, Fres. J. Anal. Chem., 1999, 363, 499-504.
  • [5] Cervera M.L., Das A.K., De la Guardia M., Literature survey of on-line elemental speciation in aqueous solutions, Talanta, 2001, 55, 1-28.
  • [6] Pyzynska K., Speciation of selenium compounds, Anal. Sci., 1998, 14, 479-482.[Crossref]
  • [7] De la Guardia M., Cervera M.L., Morales-Rubio A., Speciation Studies by Atomic Spectroscopy, Adv. At. Spec., 1999, 5, 1-98.
  • [8] Vandecasteele C., Block C.B., Modern Methods for Trace Element Determination, John Wiley & Sons, New York, 1993.
  • [9] Barshick C.M., Duckworth D.C., Smith D.H., Inorganic Mass Spectrometry: Fundamentals and Applications, Marcel Dekker, New York, 2000.
  • [10] Vela N.P., Olson L. K., Caruso J. A., Elemental speciation with plasma-mass spectrometry, Anal. Chem., 1993, 65, 585-597.[Crossref]
  • [11] Uden P., Element-Specific Chromatographic Detection by Atomic Emission Spectroscopy, American Chemical Society, Washington, 1990.
  • [12] Gomez-Ariza J.L., Morales E., Giraldez I., Sanchez-Rodas D., Sample treatment and storage in speciation analysis, in: Pitts L., Cornelis R., Crews H., Quevauviller P. (Eds.), Trace Element Speciation for Environment, Food and Health, The Royal Society of Chemistry, Cambridge, 2001, 70.
  • [13] Coelho L.M., Arruda M.A.Z., Preconcentration procedure using cloud point extraction in the presence of electrolyte for cadmium determination by flame atomic absorption spectrometry, Spectrochim. Acta, Part B, 2005, 60, 743-748.[Crossref]
  • [14] Khlifi R., Olmedo P., Gil F., Feki-Tounsi M., Chakroun A., Rebai A., Hamza-Chaffai A., Blood nickel and chromium levels in association with smoking and occupational exposure among head and neck cancer patients in Tunisia, Environ. Sci. Pollut. Res. Int., (in press), DOI:10.1007/s11356-013-1466-7.[Crossref]
  • [15] Varrica D., Tamburo E., Dongarra G., Sposito F., Trace elements in scalp hair of children chronically exposed to volcanic activity (Mt. Etna, Italy), Sci. Total Environ., 2014, 470, 117-126.
  • [16] Paleologos E.K., Giokas D. L., Karayannis M.I., Micelle-mediated separation and cloud-point extraction. Trends Anal Chem, 2005; 24, 426-436.
  • [17] Bratter P., Gercken B., Rosick U., Tomiak A., in: Trace Elements Analytical Chemistry Medical Biology, Walter de Gruyter, Berlin, 1988, 145.
  • [18] Bezerra M.A., Arruda M.A.Z., Ferreira S.L.C., Cloud point extraction as a procedure of separation and preconcentration formetal determination using spectroanalytical techniques: a review, Appl. Spectrosc., 2005, 40, 269-290.[Crossref]
  • [19] Ferreira S.L.C., Andrade J.B., Korn M.G.A., Pereira M.G., Lemos V.A., Santos W.N.L., Rodrigues F.M., Souza A.S., Ferreira H.S., Silva E.G.P., Review of procedures involving separation and preconcentration for the determination of cadmium using spectrometric techniques, J. Hazard. Mat., 2007, 145, 358-367.
  • [20] Paleologos E.K., Stalikas C.D., Tzouwara-Karayanni S.M., Karayannis M.I., Selective speciation of trace chromium through micelle-mediated preconcentration, coupled with micellar flow injection analysis-spectrofluorimetry, Anal. Chim. Acta, 2001, 436, 49-57.
  • [21] Bezerra M.A., Bruns R.E., Ferreira S.L.C., Statistical designprincipal component analysis optimization of a multiple response procedure using cloud point extraction and simultaneous determination of metals by ICP OES, Anal. Chim. Acta, 2006, 24, 251-257.[Crossref]
  • [22] Wen S., Zhu X., Wei Y., Wu S., Cloud Point Extraction-Inductively Coupled Plasma Mass Spectrometry for Separation/Analysis of Aqueous-Exchangeable and Unaqueous-Exchangeable Selenium in Tea Samples, Food Anal. Method., 2013, 6, 506-511.[Crossref]
  • [23] Ulusoy H.İ., Gurkan R., Akson U., Akcay M., Development of a cloud point extraction and preconcentration method for determination of trace aluminum in mineral waters by FAAS, Microchem. J., 2011, 76-81.[Crossref]
  • [24] Sun M., Qianghua G.L., Wu Q., Speciation of organic and inorganic selenium in selenium-enriched rice by graphite furnace atomic absorption spectrometry after cloud point extraction, Food Chem., 2013, 66-71.[Crossref]
  • [25] Ulusoy H.I., Akcay M., Ulusoy S., Gurkan R., Determination of ultra trace arsenic species in water samples by hydride generation atomic absorption spectrometry after cloud point extraction, Anal. Chim. Acta, 2011, 703,137- 144.
  • [26] Kolachi N.F., Kazi T.G., Wadhwa S.K., Afridi H.I., Baig J.A., Khan S., Shah F., Evaluation of selenium in biological sample of arsenic exposed female skin lesions and skin cancer patients with related to non-exposed skin cancer patients, Sci. Total Environ., 2011, 409, 3092-3097.
  • [27] Sounderajan S., Kumar G. K., Udas A.C., Cloud point extraction and electrothermal atomic absorption spectrometry of Se (IV)-3,3 -Diaminobenzidine for the estimation of trace amounts of Se (IV) and S (VI) in environmental water samples and total selenium in animal blood and fish tissue samples, J. Hazard. Mat., 2010, 175, 666-672.
  • [28] Suna M., Wub Q., Cloud point extraction combined with graphite furnace atomic absorption spectrometry for speciation of Cr(III) in human serum samples, J. Pharm. Biomed. Anal., 2012, 60, 14-18.[Crossref]
  • [29] Shemirani F., Baghdadi M., Ramezani M., Preconcentration and determination of ultra trace amounts of arsenic(III) and arsenic(V) in tap water and total arsenic in biological samples by cloud point extraction and electrothermal atomic absorption spectrometry, Talanta, 2005, 65,882-887.[Crossref]
  • [30] Maltez H., Development of analytical methodologies based on preconcentration systems employing solid phase extraction and microextraction with single drop for determination of trace metals in aqueous environmental samples. PhD Thesis, University of Santa Catarina, Florianopolis, Brazil, 2007.
  • [31] Tehrani M.S., Ebrahimi A.A., Rastegar F., Chromium speciation by surfactant assisted solid-phase extraction and flame atomic absorption spectrometric detection, Anal. Chem., 2004, 94, 429-435.
  • [32] Baralkiewicz D., Gramowska H., Kozka M., Determination of speciation of Cr(III) and Cr(VI) in water by selective retention on chelating resin and electrothermal atomic absorption spectrometry (ETAAS), Anal. Chem., 2004, 49, 905-913.
  • [33] Krishna M.V.B., Chandrasekaran K., Rao S.V., Karunasagar D., Arunachalam J., Speciation of Cr(III) and Cr(VI) in waters using immobilized moss and determination by ICP-MS and FAAS, Talanta, 2005, 65, 135-143.
  • [34] Yalcin S., Apak R., Chromium speciation analysis by separation of Cr(III) from Cr(VI) on a XAD sorbent derivatized with shellac: a natural polymer, Int. J. Environ. Anal. Chem., 2006, 86, 915-929.[Crossref]
  • [35] Mohammadhosseini M., Tehrani M.S., Ganjali M.R., Preconcentration, determination and speciation of chromium(III) using solid phase extraction and flame atomic absorption spectrometry, J. Chin. Chem. Soc., 2006, 53, 549-557.[Crossref]
  • [36] Bantrjee D., Das A.K., Application of xanthine functionalized resin in speciation of chromium in natural water, J. Ind. Chem. Soc., 2006, 83, 479-484.
  • [37] Wu Y.W., Zhang J., Liu J.F., Chen L., Deng Z., Han M. X., Wei X.S., Yu A.M., Zhang H., Fe3O4.ZrO2 nanoparticles magnetic solid phase extraction coupled with flame atomic absorption spectrometry for chromium(III) speciation in environmental and biological samples, Appl. Surf. Sci., 2012, 258, 6772-6776.
  • [38] Tuzen M., Saygi K.O., Karaman I., Soylak M., Selective speciation and determination of inorganic arsenic in water, food and biological samples, Food Chem. Toxicol., 2010, 48, 41-46.[Crossref]
  • [39] Bendahl L., Sidenius U., Gammelgaard B., Determination of selenoprotein P in human plasma by solid phase extraction and inductively coupled plasma mass spectrometry, Anal. Chim. Acta, 2000, 411, 103-108.
  • [40] Deagen J.T., Beilstein M.A., Whanger P.D., Chemical forms of selenium in selenium containing proteins from human plasma, J. Inorg. Biochem., 1991, 41, 261-268.[Crossref]
  • [41] Ghasemi E., Farahani H., Head space solid phase microextraction based on nano-structured lead dioxide: Application to the speciation of volatile organoselenium in environmental and biological samples, J. Chromatogr., A, 2012, 1258, 16-20
  • [42] Brings N.H., Bogaerts A., Broekaert J.A.C., Atomic spectroscopy, Anal. Chem., 2008, 80, 4317-4347.[Crossref]
  • [43] Bendicho C., Loss-Vollerbregt M.T.C., Solid sampling in electrothermal atomic absorption spectrometry using commercial atomizers. A review, J. Anal. Atom. Spectrosc., 1991, 6, 353-374.[Crossref]
  • [44] Brady D. V, Montalvo J. G, Jung J., Curran R. A., Direct Determination of Lead in Plant Leaves Via Graphite Furnace Atomic Absorption, At. Absorpt. Newsl., 1974, 13, 118.
  • [45] Brady D. V, Montalvo J. G., Direct determination of zinc sea-botton sediments by carbon tube atomic absorption spectrometry, Anal. Chim. Acta, 1974; 70, 448-452.[Crossref]
  • [46] Krug F.J., Metodos de Preparo de Amostras, CENA/USP, (6 eds.), 2006, 5-47.
  • [47] Ringmann O., Boch K., Marquardt W., Schuster M., Schlemmer G., Kainrath P., Microwave-assisted digestion of organoarsenic compounds for the determination of total arsenic in aqueous, biological, and sediment samples using flow injection hydride generation electrothermal atomic absorption spectrometry, Anal. Chim. Acta, 2002, 452, 207-215.
  • [48] Cal-Prieto M.J., Sotelo M.F., Carlosena A., Andrade J.M., Lopez-Mahia P., Muniategui S., Prada D., Slurry sampling for direct analysis of solidmaterials by electrothermal atomic absorption spectrometry (ET AAS), A literature review from 1990 to 2000, Talanta, 2002, 56, 1-51.
  • [49] Bendicho C., Loss-Vollebregt M.T.C., The influence of pyrolysis and matriz modifiers for analysis of glass materials by GF AAS using slurry introduction, Spectrochim. Acta, B, 1990, 45, 679-693.[Crossref]
  • [50] Miller-Ihli N.J., Influence of slurry preparation on the accuracy of ultrasonic slurry electrothermal atomic absorption spectrometry, J. Anal. Atom. Spectrom., 1994, 93 1129-1134.[Crossref]
  • [51] Hawell S. J., Barclay D., On-line microwave digestion of slurry samples with direct flame atomic absorption spectrometric elemental detection, Analyst, 1992, 117, 117-120.[Crossref]
  • [52] Bradshaw D., Slavin W., Rapid slurry analysis of solid coal and fly ash samples, Spectrochim. Acta, B, 1989, 44, 1245-1256.[Crossref]
  • [53] Ebdon L., Fisher A.S., Parry, H.G.M., Brown, A.A., Direct atomic spectrometric analysis by slurry atomization, Part 10, Use of an air-ashing stage in electrothermal atomic absorption spectrometry, J. Anal. Atom. Spectrom., 1990, 5, 321-324.
  • [54] Holcombe J.A., Majidi V., Errors analysis for sampling of slurriesvolumetric errors, J. Anal. Atom. Spectrom., 1989, 4, 423-425.[Crossref]
  • [55] Hernandez-Cordoba M., Lopez-Garcia I., A fast method for the determination of lead in papikra by electrothermal atomicabsorption spectrometry with slurry sample introduction, Talanta, 1991, 38, 1247-1251.
  • [56] Miller-Ihli N.J., Graphite furnace atomic absorption spectrometry for the analysis of biological materials, Spectrochim. Acta, B, 1989, 44, 1221- 1227.[Crossref]
  • [57] Morales-Rubio A., Salvador A., De la Guardia M., Fresenius J., Microwave muffle furnace assisted decomposition of vegetable samples for flame atomic spectrometry determination of Ca, Mg, K, Fe, Mn and Zn, J. Anal. Chem., 1992, 342, 452-456.
  • [58] Hill S.J.; Dawson J.B.; Price W.J.; Riby P.; Shuttler I.L.; Tyson J. F., Atomic Spectrometry Update-Advances in Atomic Absorption and Fluorescence Spectrometry and Related Techniques, J. Anal. Atom. Spectrom., 1994, 9, 215-245.
  • [59] Magalhaes C.E.C., Arruda M.A.Z., Amostragem de Suspensoes: Emprego da Tecnica na Analise Direta de Amostras, Quim. Nova, 21, 1998,459-466.[Crossref]
  • [60] Miller-Ihli N.J., Communications. Automated ultrasonic mixing accessory for slurry sampling into a graphite furnace atomic absorption spectrometer, J. Anal. Atom. Spectrom., 1989, 4, 295-297.[Crossref]
  • [61] Xiao-quan S, Shen, L., Zhe-ming N., Determination of lithium in serum and whole blood by graphite furnace atomic absorption spectrometry, J. Anal. Atom. Spectrom., 1988, 3, 989-995.
  • [62] Fukushima A.R.; Azevedo F.A., Historia da Toxicologia Parte I, Um Breve Panorama Brasileiro. Revista Intertox de Toxicologia, Risc. Amb. Soc., 2008, 1.
  • [63] Arruda M.A.Z., Trends in Sample Preparation, Nova Science Pub Inc, 2007, 304p.
  • [64] Baralkiewicz D., Sayed U., Filipiak M., Gramowska H., Determination of selenium in infant foods using electrothermal atomic absorption spectrometry with direct slurry sample introduction. Cent. Europ. J. Chem., 2004, 2, 334-346.
  • [65] Paula C.E.R., Brum D.M., Caldas L.F.S., Cassella R.J., Evaluation of extraction methods for the determination of chromium and nickel in pharmaceutical formulations and raw materials used in the manufacture of medicines based on ciprofloxacin and cephalexin, Quim. Nova, 2012, 35, 1858-1864.
  • [66] Moraes D.P., Speciation analysis of arsenic by HG AAS with cryogenic trapping and use of multi atomizer, PhD tesis, University of Santa Maria, Santa Maria, Brazil, 2010.
  • [67] Dressler V.L., Antes F.G., Moreira C.M.M., Pozebon D., Duarte F. A., As, Hg, I, Sb, Se and Sn speciation in body fluids and biological tissues using hyphenated-ICP-MS techniques: A review, Int. J. Mass Spectrom., 1996, 159, 245-256.
  • [68] Mahera W., Krikova F., Ellwood M., Foster S., Jagtap R., Raber G., Overview of hyphenated techniques using an ICP-MS detector with an emphasis on extraction techniques for measurement of metalloids by HPLC-ICPMS, Microchem. J., 2012, 105, 15-31.
  • [69] Wang H., Du X., Wang M., Cheng T.W., Yang H., Wang B., Zhu M., Wang Y., Jia G., Feng W., Using ion-pair reversed-phase HPLC ICP-MS to simultaneously determine Cr(III) and Cr(VI) in urine of chromate workers, Talanta, 2010, 81, 1856-1860.[Crossref]
  • [70] Hove E.R.A., Smith D.F., Heeren R.M.A., A concise review of mass spectrometry imaging, J. Chromat., A, 2010, 1217, 3946-3954.
  • [71] Afton S., Kubachka K., Catron B., Caruso J.A., Simultaneous characterization of selenium and arsenic analytes via ion-pairing reversed phase chromatography with inductively coupled plasma and electrospray ionization ion trap mass spectrometry for detection Applications to river water, plant extract and urine matrices, J. Chromat., A, 2008, 1208, 156-163.
  • [72] Chen Y.C., Amarasiriwardena C.J., Hsueh Y.M., Christian D.C., Stability of Arsenic Species and Insoluble Arsenic in Human Urine Cancer Epidemiology, Biomark. Prevent., 2002, 11, 1427-1433.
  • [73] Samanta G., Chowdhury U.K., Mandal B.K., Chakraborti D., Sekaran N.C., Tokunaga H., Ando M., High performance liquid chromatography inductively coupled plasma mass spectrometry for speciation of arsenic compounds in urine, Microchem. J., 2000, 65, 113-127.
  • [74] Ruimin X., Willie J., Steve S., Gene S.H., Brian B., Arsenic speciation analysis of human urine using ion exchange chromatography coupled to inductively coupled plasma mass spectrometry, Anal. Chim. Acta, 2006, 578, 186-194.
  • [75] Rabieh S., Hirner A.V., Matschullat J., Determination of arsenic species in human urine using high performance liquid chromatography (HPLC) coupled with inductively coupled plasma mass spectrometry (ICP-MS), J. Anal. Atomic Spectrom., 2008, 23, 544-549.
  • [76] Lindberg A., Goessler M.,GranderW., Nermell B., Vahter M., Evaluation of the three most commonly used analytical methods for determination of inorganic arsenic and its metabolites in urine, Toxicol. Lett., 2007, 168, 310-318.
  • [77] Yuan C., Lu X., Oro N., Wang Z., Xia Y., Wade T.J., Mumford J., Arsenic Speciation Analysis in Human Saliva, Clin. Chem., 2008, 54, 163-171.
  • [78] Encinar J. R., Ruzik R., Buchmann W., Tortajada J., Lobinski R., Szpunar J., Detection of selenocompounds in a tryptic digest of yeast selenoprotein by MALDI time-of-flight MS prior to their structural analysis by electrospray ionization triple quadrupole MS. Analyst, 2003, 128, 220-224.[Crossref]
  • [79] Nischwitz V., Pergantis S. A., First report on the detection and quantification of arsenobetaine in extracts of marine algae using HPLC-ES-MS/MS, J. Anal. Atomic Spectrom., 2006, 21, 1277-1286.
  • [80] Chassaigne H., Lobinski R., Polymorphism and identification of metallothionein isoforms by reversed-phase HPLC with on-line ion-spray mass spectrometric detection. Anal. Chem., 1998, 70, 2536-2543.[Crossref]
  • [81] Łobinski R., Schaumloffel D., Szpunar J., Mass Spectrometry in Bioinorganic a Analytical Chemistry, Mass Spectrom. Rev., 2006, 25, 255-289.
  • [82] Caruso J. A., Montes-Bayon M., Elemental speciation studies-New directions for trace metal analysis. Ecotoxicol. Environ., 2006, 56, 48-163.
  • [83] Szpunar J., Lobinski R., Prange A., Hyphenated Techniques for Elemental Speciation in Biological Systems, Appl. Spectrosc., 2003, 53, 102A-111A.
  • [84] Szpunar J., Lobinski R., Hyphenated techniques in speciation analysis. Cambridge, Royal Society of Chemistry, 2003.
  • [85] Lin Z., Zhao, M., Zhang, S. Zhang, Yang, C., Zhang, X., In situ arsenic speciation on solid surfaces by desorption electrospray ionization tandem mass spectrometry, Analyst, 2010, 135, 1268-1275.
  • [86] Chan C.C., Bolgar M.S., Miller S.A., Attygalle A.B., A Combined Desorption Ionization by Charge Exchange (DICE) and Desorption Electrospray Ionization (DESI) Source for Mass Spectrometry, J. Am. Soc. Mass Spectrom., 2011, 22, 173-178.
  • [87] Chen H., Talaty N. N., Takats Z., Cooks R. G., Desorption Electrospray Ionization Mass Spectrometry for High-Throughput Analysis of Pharmaceutical Samples in the Ambient Environment. Anal. Chem., 2005, 77, 6915-6927
  • [88] Haddad R., Sparrapan R, Eberlin M. N., Desorption sonic spray ionization for (high) voltage-free ambient mass spectrometry, Rapid Commun. Mass Spectrom., 2006, 20, 2901-2905
  • [89] Talaty N., Mulligan C.C., Justes D.R., Jackson A.U., Noll R.J., Cooks R.G., Fabric analysis by ambient mass spectrometry for explosives and drugs, Analyst, 2008, 133, 1532-1540.
  • [90] Suni M., Lindfors P., Laine O., Ostman P., Ojanpera I., Kotiaho T., Kauppila T.J., Kostiainen R., Matrix effect in the analysis of drugs of abuse from urine with desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) and desorption electrospray ionization-mass spectrometry (DESI-MS), Anal. Chim. Acta, 2011, 699, 73-80.
  • [91] Badu-Tawiah A., Bland C., Campbell D. I., Cooks R. G., Non-Aqueous Spray Solvents and Solubility Effects in Desorption Electrospray Ionization, J. Am. Soc. Mass Spectrom., 2010, 21, 572-579.
  • [92] Dill A. L., Eberlin L. S., Costa A. B., Ifa D. F., Cooks R. G., Data quality in tissue analysis using desorption electrospray ionization, Anal. Bioanal. Chem., 2011, 401, 949-61
  • [93] Salter T. L., Green F. M., Faruqui N., Gilmore I. S., Analysis of personal care products on model skin surfaces using DESI and PADI ambient mass spectrometry, Analyst, 2011, 136, 3274.
  • [94] Roach P. J., Laskin J., Laskin A., Nanospray desorption electrospray ionization: an ambient method for liquidextraction surface sampling in mass spectrometry, Analyst, 2010, 135, 2233-2236.
  • [95] Liu Y., Miao Z., Lakshmanan R., Loo,R. R. O., Loo J. A., Chen H., Signal and charge enhancement for protein analysis by liquid chromatography-mass spectrometry with desorption electrospray ionization, Int. J. Mass Spectrom., 2012, 161-166. [Crossref]
  • [96] Gonzalvez A., Cervera M.L., Armenta S., de la Guardia M., A review of non-chromatographic methods for speciation analysis, Anal. Chim. Acta, 2009, 636, 129-157.
  • [97] Coelho L. M., Coelho N. M. M., Arruda M. A. Z. Arruda, Guardia M. Guardia. On-line bi-directional electrostacking for As speciation/preconcentration using electrothermal atomic absorption spectrometry, Talanta, 2007, 71, 353-358.[Crossref]
  • [98] Bacquart T., Deves G., Ortega R., Direct speciation analysis of arsenic in sub-cellular compartments using micro-X-ray absorption spectroscopy, Environ. Res., 2010, 110, 413-416.
  • [99] Ortega R., Direct speciation analysis of inorganic elements in single cells using X-ray absorption spectroscopy, J. Anal. Atom.
  • Spectrom., 2011, 26, 23-28.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_sampre-2014-0001
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.