PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2014 | 9 | 6 | 849-859
Article title

Sutures in abdominal surgery: biomechanical study and clinical application

Content
Title variants
Languages of publication
EN
Abstracts
EN
The aim of this study is to improve treatment results and SSI prevention by differential usage of the contemporary suture materials and choice of proper suturing technique. To simulate suturing process and compared two suturing techniques, two FE models were developed. Finite-element analysis (FEA) was based on experimental data of contemporary commercial sutures and soft tissue properties. We applied obtained results for abdominal wall closure in rats and compared non-absorbable suture (capron) with absorbable suture (PDS Plus) for chosen technique. Cross-sections were examined by lighting electron microscope. Afterwards, the results of patients’ treatment are also presented. It was shown that running sew was more appropriate for aponeurosis suturing compared to interrupted sew. The optimal parameters of suturing techniques were computed. Single-row running sew by PDS Plus was proved to hold wound edges for 90 days with less inflammatory response compared to other suture in the result of histological analysis. Application of contemporary synthetic absorbable suture materials with antibacterial coating for laparotomic wounds closure and anastomosis decreases local inflammatory reaction and provides the successful tissue regeneration. Application of advanced SSI prophylactics algorithm was shown to decrease risk of post-operative suppurative complications from 14.2 to 1.6 %.
Publisher
Journal
Year
Volume
9
Issue
6
Pages
849-859
Physical description
Dates
published
1 - 12 - 2014
online
16 - 8 - 2014
References
  • [1] Albertsmeier M., Seiler C.M., Fischer L., Evaluation of the safety and efficacy of MonoMax® suture material for abdominal wall closure after primary midline laparotomy-a controlled prospective multicentre trial: ISSAAC [NCT005725079], Langenbecks Arch. Surg., 2012, 397(3), 363–371 http://dx.doi.org/10.1007/s00423-011-0884-6
  • [2] Sbisbatskaya E.I., Volova T.G., Puzyr A.P., Mogilnaya O.A., Efremov S.N., Tissue response to the implantation of biodegradable polyhydroxyalkanoate sutures, J. Mater. Sci. Mater. Med., 2004, 11(15), 719–728 [Crossref]
  • [3] Vainionpaa S., Rorranen P., Tormala P., Surgical applications of biodegradable polymers in human tissues, Prog. Polym. Sci., 1989, 14, 679–716 http://dx.doi.org/10.1016/0079-6700(89)90013-0[Crossref]
  • [4] Marco F., Vallez R., Gonzalez P., Study of the efficacy of coated Vicryl plus antibacterial suture in an animal model of orthopedic surgery, Surg. Infect. (Larchmt), 2007, 8(3), 359–365 http://dx.doi.org/10.1089/sur.2006.013[Crossref]
  • [5] Nilsson T., Mechanical properties of Prolene and Ethilon sutures after three weeks in vivo, Scand. J. Plast. Reconstr. Surg., 1982, 16(1), 11–15 [Crossref]
  • [6] Justinger C., Slotta J.E., Schilling M.K., Incisional hernia after abdominal closure with slowly absorbable versus fast absorbable, antibacterial-coated sutures, Surgery, 2012, 151(3), 398–403 http://dx.doi.org/10.1016/j.surg.2011.08.004[WoS][Crossref]
  • [7] Israelsson L.A., Wimo A., Cost minimization analysis of change in closure technique of midline incisions, Eur. J. Surg., 2000, 166(8), 642–646 http://dx.doi.org/10.1080/110241500750008312[Crossref]
  • [8] Bezwada R.S., Jamiolkowski D.D., Lee In-Y., Agarwal V., Persivale J., Trenka-Benthin S., Emeta M., Suryadevara J., Yang A., Liu S., Monocryl suture, a new ultra-pliable absorbable monofilament suture, Biomaterials, 1995, 16, 1141–1148 http://dx.doi.org/10.1016/0142-9612(95)93577-Z[Crossref]
  • [9] Chen X., Yang X., Pan J., Wang L., Xu K., Degradation behaviors of bioabsorbable P3/4HB monofilament suture in vitro and in vivo, Journal of Biomedical Materials Research. Part B: Applied Biomaterials, 2010, 3(92), 447–455 [WoS]
  • [10] Garber S.M., Sackier J.M., Suturing and tissue approximation, In: Brooks D.C. (Ed.), Current review of minimally invasive surgery, New York: Springer-Verlag, 1998
  • [11] Yazdany T., Yip S., Bhatia N.N., Nguyen J.N., Suture complications in a teaching institution among patients undergoing uterosacral ligament suspension with permanent braided suture, International Urogynecology Journal, 2010, 21(7), 813–818 http://dx.doi.org/10.1007/s00192-010-1109-1[Crossref][WoS]
  • [12] Unalp H.R., Kamer E., Onal M.A., Analysis of early relaparotomy after lower gastrointestinal system surgery, Surgery Today, 2008, 38(4), 323–328 http://dx.doi.org/10.1007/s00595-007-3621-6[Crossref][WoS]
  • [13] Karahan M.A., Kulacoglu H., Seker D., Ergul Z., Kiziltay A., Yilmazer D., et al., How safe is the use of prosthetic materials in the repair of abdominalwall defects in malnourished subjects?, Central European Journal of Medicine, 2009, 4(3), 331–336 http://dx.doi.org/10.2478/s11536-009-0029-2[WoS][Crossref]
  • [14] Hiram C., Polk Jr., Lewis M., Flint M.D., Intraabdominal injuries in polytrauma, World Journal of Surgery, 1983, 7(1), 56–67 http://dx.doi.org/10.1007/BF01655913[Crossref]
  • [15] Chauhan H., Patel U., Effect of intra-abdominal absorbable sutures on surgical site infection, National Journal of Medical Research, 2012, 2(3), 372–376
  • [16] Zhang Z., Zhang H., Fang X., Wang L., Li X., Li Y., Sun X., Carver J., Simpkins D., Shen J., Weisberg M., Cosmetic outcome and surgical site infection rates of antibacterial absorbable (Polyglactin 910) suture compared to chinese silk suture in breast cancer surgery: a randomized pilot research, Chinese Medical Journal, 2011, 124(5), 719–724 [WoS]
  • [17] Leaper D.J., Surgical-site infection, British. Journal of. Surgery, 2010, 97(11), 1601–1602 http://dx.doi.org/10.1002/bjs.7275[Crossref]
  • [18] Luijendijk R.W., Hop W.C., van den Tol M.P., de Lange D.C., Braaksma M.M., IJzermans J.N., Boelhouwer R.U., de Vries B.C., Salu M.K., Wereldsma J.C., Bruijninckx C.M., Jeekel J., A comparison of suture repair with mesh repair for incisional hernia, N. Engl. J. Med., 2000, 343, 392–398 http://dx.doi.org/10.1056/NEJM200008103430603[Crossref]
  • [19] Katoh T., Kawano K., Furutani A., Katsuki T., Onoda M., Oga A., The use of the continuous suture technique in dunking pancreatojejunostomy without stenting, Surgery Today, 2013, 43(9), 1008–1012 http://dx.doi.org/10.1007/s00595-012-0363-x[Crossref][WoS]
  • [20] Lian L.L., Chen Y.H., Haptic surgical simulation: an application to virtual suture, Computer-Aided Design & Applications, 2006, 3(1–4), 203–210 http://dx.doi.org/10.1080/16864360.2006.10738457[Crossref]
  • [21] Aloisio G., Tommaso L., Mongelli A., Provenzano L., Artery soft-tissue modelling for stent implant training system, Systemics, cybernetics and informatics, 2002, 2(4), 7–11
  • [22] Hao L., Predictive surgical simulation for cardiac surgery, Journal of Biomechanics, 2008, 14, 1–53
  • [23] Jones I.A., Becker A.A., Glover A.T., Wang P., Benford S.D., Vloeberghs M., Greenhalgh C.M., Computational mechanics in virtual reality: cutting and tumour interactions in a boundary element simulation of surgery on the brain, Journal of Biomechanics, 2005, 38, 1–8 http://dx.doi.org/10.1016/j.jbiomech.2004.07.027[Crossref]
  • [24] De Novi G., Melchiorri C., Surgery simulations and haptic feedback: a new approach for local interaction using implicit surfaces, Proceedings of International Conference on Applied Bionics and Biomechanics, (14–16 October 2010, Venice, Italy), Italy, 2010
  • [25] Lima M., Melchiorri C., Ruggeri G., De Novi G., Gargano T., Mogiatti M., Mazzero G., A new robotic platform for endoscopic skill training, Proceedings of 17 International Congress on Endoscopic Surgery (17–20 June 2009, Prague, Czech Republic), Springer, 2009
  • [26] Bro-Nielsen M., Finite element modeling in surgery simulation, Proceedings of the IEEE, 1998, 86(3), 490–503 http://dx.doi.org/10.1109/5.662874[Crossref]
  • [27] Picinbono G., Delingette H., Ayache N., Nonlinear anisotropic elasticity for real-time surgery simulation, Graphical Models, 2003, 65(5), 305–321 http://dx.doi.org/10.1016/S1524-0703(03)00045-6[Crossref]
  • [28] Misra S., Ramesh K.T., Okamura A.M., Modeling of tool-tissue interactions for computer-based surgical simulation: a literature review presence, Presence (Camb), 2008, 17(5), 463–491
  • [29] Lenoir J., Meseure P., Grisoni L., A suture model for surgical simulation, Lect. Notes Comput. Sci., 2004, 3078, 105–113 http://dx.doi.org/10.1007/978-3-540-25968-8_12[Crossref]
  • [30] Patete P., Iacono M.I., Spadea M.F., Trecate G., Vergnaghi D., Mainardi L.T., et al., A multi-tissue mass-spring model for computer assisted breast surgery, Medical Engineering & Physics, 2013, 35, 47–53 http://dx.doi.org/10.1016/j.medengphy.2012.03.008[Crossref][WoS]
  • [31] LeDuc M., Payandeh S., Dill J., Toward modeling of a suturing task, Graphics Interface, 2003, 1, 273–279
  • [32] Brown J., Montgomery K., Latombe J.-C., Stephanides M., A microsurgery simulation system, MICCAI01, Utrecht, 2001, 17
  • [33] Phillips J., Ladd A., Kavraki L., Simulated knot tying, Proceedings of IEEE International Conference on Robotics and Automation (11–15 May 2002, Washington, USA), USA, 2002, 841–846
  • [34] Jasinoski S.C., Reddy B.D., Louw K.K., Chinsamy A., Mechanics of cranial sutures using the finite element method, Journal of Biomechanics, 2010, 43, 3104–3111 http://dx.doi.org/10.1016/j.jbiomech.2010.08.007[WoS][Crossref]
  • [35] Limbert C., Bryan R., Cotton R., Young P., Hall-Stoodley L., Kathju S., Stoodley P., On the mechanics of bacterial biofilms on non-dissolvable surgical sutures: a laser scanning confocal microscopybased finite element study, Acta Biomaterialia, 2013, 9, 6641–6652 http://dx.doi.org/10.1016/j.actbio.2013.01.017[WoS][Crossref]
  • [36] Capek L., Jacquet E., Dzan L., Simunek A., The analysis of forces needed for the suturing of elliptical skin wounds, Medical & Biological Engineering & Computing, 2012, 50(2), 193–198 http://dx.doi.org/10.1007/s11517-011-0857-5[Crossref][WoS]
  • [37] Shilko S.V., Chernous D.A., Panin S.V., Model and analysis of contact interaction of one-dimensional polymeric implants with biotissues, Russian Journal of Biomechanics, 2011, 15(1), 65–73
  • [38] Pgez G.J.M., San Martin C.A., Sestafe A.G., Herrero E.G., Navidad R., Cordon A., Castillo-Olivares J.L., Elastic behaviour of sutured calf pericardium: influence of the suture threads, Biomaterials, 1996, 17, 1677–1683 http://dx.doi.org/10.1016/0142-9612(96)87647-2[Crossref]
  • [39] Nishimura K.A., Mori R., Miyamoto W., Uchio Y., New technique for small and secure knots using slippery polyethylene sutures, Clinical Biomechanics, 2009, 24, 403–406 http://dx.doi.org/10.1016/j.clinbiomech.2009.01.013[Crossref][WoS]
  • [40] Balgobin S., Hamid C.A., Brown S.A., Wai C.Y., Mechanical performance of surgical knots in a vaginal surgery model, Journal of Surgical Education, 2013, 70(3), 340–344 http://dx.doi.org/10.1016/j.jsurg.2012.11.010[WoS][Crossref]
  • [41] van’t Riet M., de Vos van Steenwijk P.J., Kleinrensink G.J., Steyerberg E.W., Bonjer H.J., Tensile strength of mesh fixation methods in laparoscopic incisional hernia repair, Surg Endosc., 2002, 16(12), 1713–1716 http://dx.doi.org/10.1007/s00464-001-9202-7[Crossref]
  • [42] Ishikawa K., Sadahiro S., Tanaka Y., Suzuki T., Kamijo A., Tazume S., Optimal sutures for use in the abdomen: an evaluation based on the formation of adhesions and abscesses, Surgery Today, 2013, 43(4), 412–417 http://dx.doi.org/10.1007/s00595-012-0249-y[WoS][Crossref]
  • [43] Bekiari A., Dimopoulos D., Mantelou A., Tatsis V., Fatouros M., Baltogiannis G., Glantzounis G., Surgical site infections in general surgery operations in North West Greece: A prospective pilot study, Hellenic Journal of Surgery, 2013, 85(4), 229–234 http://dx.doi.org/10.1007/s13126-013-0045-1[Crossref]
  • [44] Azizi E., Halenda G.M., Roberts T.J., Mechanical properties of the gastrocnemius aponeurosis in wild turkeys, Integrative and Comparative Biology, 2009, 49(1), 51–58 http://dx.doi.org/10.1093/icb/icp006[WoS][Crossref]
  • [45] Holzapfel G.A., Gasser T.C., Ogden R.W., A new constitutive framework for arterial wall mechanics and comparative study of material models, Journal of Elasticity, 2000, 61, 1–48 http://dx.doi.org/10.1023/A:1010835316564[Crossref]
  • [46] Marquardt D.W., An algorithm for least-squares estimation of non-linear parameters, SIAM Journal on Applied Mathematics, 1963, 11, 431–441 http://dx.doi.org/10.1137/0111030[Crossref]
  • [47] Holzapfel G.A., Gasser C.T., Sommer G., Regitnig P., Determination of the layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thicking, and related constitutive modeling, American Journal of Physiology-Heart and Circulatory Physiology, 2005, 289, H2048–H2058
  • [48] Morrow D.A., Donahue T.H., Odegard G.M., Haufman K.R., A method for assessing the fit of a constitutive material model to experimental stress-strain data, Computer Methods in Biomechanics and Biomedical Engineering, 2010, 12, 247–256 http://dx.doi.org/10.1080/10255840903170686[Crossref][WoS]
  • [49] Tuktamyshev V.S., Kuchumov A.G., Nyashin Yu.I., Samarcev V.A., Kasatova E.Yu. Intraabdominal pressure of human, Russian Journal of Biomechanics, 2013, 17(1), 22–30
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11536-013-0334-7
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.