Preferences help
enabled [disable] Abstract
Number of results
2014 | 9 | 3 | 468-476
Article title

Animal and human dentin microstructure and elemental composition

Title variants
Languages of publication
Animal teeth are a common model in studies on dentin adhesive materials. The aim of this study was to compare microstructural parameters (density and diameter of dentinal tubules (DT), peritubular dentin (PTD) thickness, PTD and intertubular dentin (ITD) surface area) and chemical characteristics of canine, porcine, equine, and human root dentin. The middle layers of dentin were harvested just below a cemento-enamel junction from incisors and investigated by means of scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDXS). SEM evaluation of the specimens revealed, that porcine dentin shared most similarities with human dentin. When comparing the density of DTs, canine dentin was also found to be similar to human dentin. Elemental composition of the root dentin did not differ significantly in porcine, equine and human dentin, but in canine dentin higher magnesium value in PTD compared to ITD was found. It is known that microstructural and chemical characteristics affect the strength of the adhesive bonds created among restorative materials and dentin. According to the results of this study, porcine dentin seems to be the most appropriate model to study dental materials to be used in human restorative dentistry.
Physical description
1 - 6 - 2014
8 - 7 - 2014
  • Clinic for Small Animal Medicine and Surgery, Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
  • Clinic for Small Animal Medicine and Surgery, Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
  • Department of Oral Medicine and Periodontology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
  • Laboratory of Biophysics, EPR Centre, Solid State Physics Department, Jožef Stefan Institute, 1000, Ljubljana, Slovenia
  • Clinic for Reproduction and Horses, Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
  • Department of Paediatric and Preventive Dentistry, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
  • [1] Rasmussen S.T., Patchin R.E., Fracture properties of human enamel and dentin in an aqueous environment, J. Dent. Res., 1984, 63(12), 1362–1368[Crossref]
  • [2] Nanci A., Ten Cate’s Oral Histology: Development, Structure and Function, 6th ed., St. Louis, Mosby, 2003
  • [3] Muylle S., Simoens P., Lauwers H., A study of the ultrastructure and staining characteristics of the «dental star» of equine incisors, Equine Vet. J., 2002, 34(3), 230–234[Crossref]
  • [4] Garberoglio R., Brännström M., Scanning electron microscopic investigation of human dentinal tubules, Arch. Oral Biol., 1976, 21(6), 355–362[Crossref]
  • [5] Forssell-Ahlberg K., Brännström M., Edwall L., The diameter and number of dentinal tubules in rat, cat, dog and monkey. A comparative scanning electron microscopic study, Acta Odontol. Scand., 1975, 33(5), 243–250[Crossref]
  • [6] Robb L., Marx J., Steenkamp G., van Heerden W.F., Pretorius E., Boy S.C., Scanning electron microscopic study of the dentinal tubules in dog canine teeth, J. Vet. Dent., 2007, 24(2), 86–89
  • [7] Dutra-Correa M., Anauate-Netto C., Arana-Chavez V.E., Density and diameter of dentinal tubules in etched and non-etched bovine dentin examined by scanning electron microscopy, Arch. Oral Biol., 2007, 52, 850–855[WoS][Crossref]
  • [8] Lopes M.B., Sinhoreti M.A., Gonini Júnior A., Consani S., McCabe J.F., Comparative study of tubular diameter and quantity for human and bovine dentin at different depths, Braz. Dent. J., 2009, 20(4), 279–283[Crossref]
  • [9] Kinney J.H., Pople J.A., Marshall G.W., Marshall S.J., Collagen orientation and crystallite size in human dentin: a small angle X-ray scattering study, Calcif. Tissue Int., 2001, 69(1), 31–37[Crossref]
  • [10] Kilic S., Dixon P., Kempson S., A light microscopic and ultrastructural examintaion of calcified dental tissues of horses: 3. Dentin, Equine Vet. J., 1997, 29, 206–212[Crossref]
  • [11] Dai X.F., Tencate A.R., Limeback H., The extent and distribution of intratubular collagen fibrils in human dentin, Arch. Oral Biol., 1991, 36(10), 775–778[Crossref]
  • [12] Magne D., Guicheux J., Weiss P., Pilet P., Daculsi G., Fourier transform infrared microspectroscopic investigation of the organic and mineral constituents of peritubular dentin: a horse study, Calcif. Tissue Int., 2002, 71(2), 179–185[Crossref]
  • [13] Qin Q.H., Swain M.V., A micro-mechanics mode of dentin mechanical properties, Biomaterials, 2004, 25(20), 5081–5090[Crossref]
  • [14] Xu C., Wang Y., Chemical composition and structure of peritubular and intertubular human dentin revisited, Arch. Oral Biol., 2012, 57(4), 383–391[Crossref][WoS]
  • [15] Gotliv B.A., Robach J.S., Veis A., The composition and structure of bovine peritubular dentin: mapping by time of flight secondary ion mass spectroscopy, J. Struct. Biol., 2006, 156(2), 320–333[Crossref]
  • [16] Gotliv B.A., Veis A., Peritubular dentin, a vertebrate apatitic mineralized tissue without collagen: role of a phospholipid-proteolipid complex, Calcif. Tissue Int., 2007, 81(3), 191–205[Crossref][WoS]
  • [17] Habelitz S., Rodriguez B.J., Marshall S.J., Marshall G.W., Kalinin S.V., Gruverman A., Peritubular dentin lacks piezoelectricity, J. Dent. Res., 2007, 86(9), 908–911[Crossref]
  • [18] Gotliv B.A., Veis A., The composition of bovine peritubular dentin: matching TOF-SIMS, scanning electron microscopy and biochemical component distributions. New light on peritubular dentin function, Cells Tissues Organs, 2009, 189(1–4), 12–19[Crossref]
  • [19] Sögaard-Pedersen B., Boye H., Matthiessen M.E., Scanning electron microscope observations on collagen fibers in human dentin and pulp, Scand. J. Dent., 1990, 98(2), 89–95
  • [20] Linde A., Goldberg M., Dentinogenesis, Crit. Rev. Oral Biol. Med., 1993, 4(5), 679–728
  • [21] Muylle S., Simoens P., Lauwers H., Tubular contents of equine dentin: A scanning electron microscopic study, J. Vet. Med., 2000, 47, 321–330[Crossref]
  • [22] Wiesmann H.P., Meyer U., Plate U., Höhling H.J., Aspects of collagen mineralization in hard tissue formation, Int. Rev. Cytol., 2005, 242, 121–156[Crossref]
  • [23] Hong H., Tie L., Jian T., The crystal characteristics of enamel and dentin by XRD method, J. Wuhan. Univ. Technol. Mater. Sci. Ed., 2006, 21(1), 9–12[Crossref]
  • [24] Arnold W.H., Konopka S., Gaengler P., Qualitative and quantitative assessment of intertubular dentin formation in human natural carious lesions, Calcif. Tissue Int., 2001, 69, 268–273[Crossref]
  • [25] Kodaka T., Debari K., Yamada M., Physicochemical and morphological studies of horse dentin, J. Electron. Microsc., 1991, 40(6), 385–391
  • [26] Sakoolnamarka R., Burrow M.F., Swain M., Tyas M.J., Microhardness and Ca:P ratio of carious and Carisolv treated caries-affected dentin using an ultra-micro-indentation system and energy dispersive analysis of x-rays-a pilot study, Aust. Dent. J., 2005, 50(4), 246–250[Crossref]
  • [27] Lakomaa E.L., Rytömaa I., Mineral composition of enamel and dentin of primary and permanent teeth in Finland, Scand. J. Dent. Res., 1977, 85(2), 89–95
  • [28] Coradazzi J.L., Silva C.M., Pereira J.C., Francischone C.E., Shear bond strength of an adhesive system in human, bovine and swinish teeth, Rev. Fac. Odontol. Bauru., 1998, 6(4), 29–33
  • [29] Krifka S., Börzsönyi A., Koch A., Hiller K.A., Schmalz G., Friedl K.H., Bond strength of adhesive systems to dentin and enamel-human vs. bovine primary teeth in vitro, Dent. Mater., 2008, 24(7), 888–894[Crossref]
  • [30] Marshall G.W. Jr., Marshall S.J., Kinney J.H., Balooch M., The dentin substrate: structure and properties related to bonding, J. Dent., 1997, 25(6), 441–458[Crossref]
  • [31] Inoue T., Saito M., Yamamoto M., Debari K., Kou K., Nishimura F., et al., Comparison of nanohardness between coronal and radicular intertubular dentin, Dent. Mater. J., 2009, 28(3), 295–300[Crossref][WoS]
  • [32] Chu C.Y., Kuo T.C., Chang S.F., Shyu Y.C., Lin C.P., Comparison of the microstructure of crown and root dentin by a scanning electron microscopic study, J. Dent. Sci., 2010, 5(1), 14–20[Crossref][WoS]
  • [33] Schilke R., Lisson J.A., Bauss O., Geurtsen W., Comparison of the number and diameter of dentinal tubules in human and bovine dentin by scanning electron microscopic investigation, Arch. Oral Biol., 2000, 45(5), 355–361[Crossref]
  • [34] Schellenberg U., Krey G., Bosshardt D., Nair P.N., Numerical density of dentinal tubules at the pulpal wall of human permanent premolars and third molars, J. Endod., 1992, 18(3), 104–109[Crossref]
  • [35] Ferrari M., Mannocci F., Vichi A., Cagidiaco M.C., Mjör I.A., Bonding to root canal: structural characteristics of the substrate, Am. J. Dent., 2000, 13(5), 255–260
  • [36] Calt S., Serper A., Time-dependent effects of EDTA on dentin structures, J. Endod., 2002, 28(1), 17–19[Crossref]
  • [37] Van Meerbeeck B., Inokoshi S., Braem M., Lambrechts P., Vanherle G., Morphological aspects of the resin-dentin interdiffusion zone with different dentin adhesive systems, J. Dent. Res., 1992, 71, 1530–1540[Crossref]
  • [38] Muylle S., Simoens P., Lauwers H., The distribution of intratubular dentin in equine incisors: a scanning electron microscopic study, Equine Vet. J., 2001, 33(1), 65–69[Crossref]
  • [39] Pashley D.H.. Dynamics of the pulpo-dentin complex, Crit. Rev. Oral Biol. Med., 1996, 7(2), 104–133[Crossref]
  • [40] Lloyd G.E., Atomic number and crystallographic contrast images with the SEM: a review of backscattered electron techniques, Mineral. Mag., 1987, 51, 3–19[Crossref]
  • [41] Murray M.M., The chemical composition of teeth: The calcium, magnesium and phosphorus contents of the teeth of different animals. A brief consideration of the mechanisn of calcification, Biochem. J., 1936, 30(9), 1567–1571
  • [42] Ballal N.V., Mala K., Bhat K.S., Evaluation of decalcifying effect of maleic acid and EDTA on root canal dentin using energy dispersive spectrometer, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2011, 112(2), 78–84[Crossref][WoS]
  • [43] Yoshiyama M., Noiri Y., Ozaki K., Uchida A., Ishikawa Y., Ishida H., Transmission electron microscopic characterization of hypersensitive human radicular dentin, J. Dent. Res., 1990, 69, 1293–1297[Crossref]
  • [44] Lopes F.M., Markarian R.A., Sendyk C.L., Duarte C.P., Arana-Chavez V.E., Swine teeth as potential substitutes for in vitro studies in tooth adhesion: a SEM observation, Arch. Oral Biol., 2006, 51(7), 548–551[Crossref]
  • [45] Mannocci F., Pilecki P., Bertelli E., Watson T.F., Density of dentinal tubules affects the tensile strength of root dentin, Dent. Mater., 2004, 20(3), 293–296[Crossref]
  • [46] Ari H., Erdemir A., Effects of endodontic irrigation solutions on mineral content of root canal dentin using ICP-AES technique, J. Endod., 2005, 31(3), 187–189[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.