PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2014 | 9 | 3 | 468-476
Article title

Animal and human dentin microstructure and elemental composition

Content
Title variants
Languages of publication
EN
Abstracts
EN
Animal teeth are a common model in studies on dentin adhesive materials. The aim of this study was to compare microstructural parameters (density and diameter of dentinal tubules (DT), peritubular dentin (PTD) thickness, PTD and intertubular dentin (ITD) surface area) and chemical characteristics of canine, porcine, equine, and human root dentin. The middle layers of dentin were harvested just below a cemento-enamel junction from incisors and investigated by means of scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDXS). SEM evaluation of the specimens revealed, that porcine dentin shared most similarities with human dentin. When comparing the density of DTs, canine dentin was also found to be similar to human dentin. Elemental composition of the root dentin did not differ significantly in porcine, equine and human dentin, but in canine dentin higher magnesium value in PTD compared to ITD was found. It is known that microstructural and chemical characteristics affect the strength of the adhesive bonds created among restorative materials and dentin. According to the results of this study, porcine dentin seems to be the most appropriate model to study dental materials to be used in human restorative dentistry.
Publisher

Journal
Year
Volume
9
Issue
3
Pages
468-476
Physical description
Dates
published
1 - 6 - 2014
online
8 - 7 - 2014
Contributors
author
  • Clinic for Small Animal Medicine and Surgery, Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia, nina_mlakar@siol.net
  • Clinic for Small Animal Medicine and Surgery, Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
author
  • Department of Oral Medicine and Periodontology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
  • Laboratory of Biophysics, EPR Centre, Solid State Physics Department, Jožef Stefan Institute, 1000, Ljubljana, Slovenia
  • Clinic for Reproduction and Horses, Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
  • Department of Paediatric and Preventive Dentistry, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
References
  • [1] Rasmussen S.T., Patchin R.E., Fracture properties of human enamel and dentin in an aqueous environment, J. Dent. Res., 1984, 63(12), 1362–1368 http://dx.doi.org/10.1177/00220345840630120501[Crossref]
  • [2] Nanci A., Ten Cate’s Oral Histology: Development, Structure and Function, 6th ed., St. Louis, Mosby, 2003
  • [3] Muylle S., Simoens P., Lauwers H., A study of the ultrastructure and staining characteristics of the «dental star» of equine incisors, Equine Vet. J., 2002, 34(3), 230–234 http://dx.doi.org/10.2746/042516402776186038[Crossref]
  • [4] Garberoglio R., Brännström M., Scanning electron microscopic investigation of human dentinal tubules, Arch. Oral Biol., 1976, 21(6), 355–362 http://dx.doi.org/10.1016/S0003-9969(76)80003-9[Crossref]
  • [5] Forssell-Ahlberg K., Brännström M., Edwall L., The diameter and number of dentinal tubules in rat, cat, dog and monkey. A comparative scanning electron microscopic study, Acta Odontol. Scand., 1975, 33(5), 243–250 http://dx.doi.org/10.3109/00016357509004629[Crossref]
  • [6] Robb L., Marx J., Steenkamp G., van Heerden W.F., Pretorius E., Boy S.C., Scanning electron microscopic study of the dentinal tubules in dog canine teeth, J. Vet. Dent., 2007, 24(2), 86–89
  • [7] Dutra-Correa M., Anauate-Netto C., Arana-Chavez V.E., Density and diameter of dentinal tubules in etched and non-etched bovine dentin examined by scanning electron microscopy, Arch. Oral Biol., 2007, 52, 850–855 http://dx.doi.org/10.1016/j.archoralbio.2007.03.003[WoS][Crossref]
  • [8] Lopes M.B., Sinhoreti M.A., Gonini Júnior A., Consani S., McCabe J.F., Comparative study of tubular diameter and quantity for human and bovine dentin at different depths, Braz. Dent. J., 2009, 20(4), 279–283 http://dx.doi.org/10.1590/S0103-64402009000400003[Crossref]
  • [9] Kinney J.H., Pople J.A., Marshall G.W., Marshall S.J., Collagen orientation and crystallite size in human dentin: a small angle X-ray scattering study, Calcif. Tissue Int., 2001, 69(1), 31–37 http://dx.doi.org/10.1007/s00223-001-0006-5[Crossref]
  • [10] Kilic S., Dixon P., Kempson S., A light microscopic and ultrastructural examintaion of calcified dental tissues of horses: 3. Dentin, Equine Vet. J., 1997, 29, 206–212 http://dx.doi.org/10.1111/j.2042-3306.1997.tb01670.x[Crossref]
  • [11] Dai X.F., Tencate A.R., Limeback H., The extent and distribution of intratubular collagen fibrils in human dentin, Arch. Oral Biol., 1991, 36(10), 775–778 http://dx.doi.org/10.1016/0003-9969(91)90045-V[Crossref]
  • [12] Magne D., Guicheux J., Weiss P., Pilet P., Daculsi G., Fourier transform infrared microspectroscopic investigation of the organic and mineral constituents of peritubular dentin: a horse study, Calcif. Tissue Int., 2002, 71(2), 179–185 http://dx.doi.org/10.1007/s00223-001-2108-5[Crossref]
  • [13] Qin Q.H., Swain M.V., A micro-mechanics mode of dentin mechanical properties, Biomaterials, 2004, 25(20), 5081–5090 http://dx.doi.org/10.1016/j.biomaterials.2003.12.042[Crossref]
  • [14] Xu C., Wang Y., Chemical composition and structure of peritubular and intertubular human dentin revisited, Arch. Oral Biol., 2012, 57(4), 383–391 http://dx.doi.org/10.1016/j.archoralbio.2011.09.008[Crossref][WoS]
  • [15] Gotliv B.A., Robach J.S., Veis A., The composition and structure of bovine peritubular dentin: mapping by time of flight secondary ion mass spectroscopy, J. Struct. Biol., 2006, 156(2), 320–333 http://dx.doi.org/10.1016/j.jsb.2006.02.005[Crossref]
  • [16] Gotliv B.A., Veis A., Peritubular dentin, a vertebrate apatitic mineralized tissue without collagen: role of a phospholipid-proteolipid complex, Calcif. Tissue Int., 2007, 81(3), 191–205 http://dx.doi.org/10.1007/s00223-007-9053-x[Crossref][WoS]
  • [17] Habelitz S., Rodriguez B.J., Marshall S.J., Marshall G.W., Kalinin S.V., Gruverman A., Peritubular dentin lacks piezoelectricity, J. Dent. Res., 2007, 86(9), 908–911 http://dx.doi.org/10.1177/154405910708600920[Crossref]
  • [18] Gotliv B.A., Veis A., The composition of bovine peritubular dentin: matching TOF-SIMS, scanning electron microscopy and biochemical component distributions. New light on peritubular dentin function, Cells Tissues Organs, 2009, 189(1–4), 12–19 http://dx.doi.org/10.1159/000151726[Crossref]
  • [19] Sögaard-Pedersen B., Boye H., Matthiessen M.E., Scanning electron microscope observations on collagen fibers in human dentin and pulp, Scand. J. Dent., 1990, 98(2), 89–95
  • [20] Linde A., Goldberg M., Dentinogenesis, Crit. Rev. Oral Biol. Med., 1993, 4(5), 679–728
  • [21] Muylle S., Simoens P., Lauwers H., Tubular contents of equine dentin: A scanning electron microscopic study, J. Vet. Med., 2000, 47, 321–330 http://dx.doi.org/10.1046/j.1439-0442.2000.00295.x[Crossref]
  • [22] Wiesmann H.P., Meyer U., Plate U., Höhling H.J., Aspects of collagen mineralization in hard tissue formation, Int. Rev. Cytol., 2005, 242, 121–156 http://dx.doi.org/10.1016/S0074-7696(04)42003-8[Crossref]
  • [23] Hong H., Tie L., Jian T., The crystal characteristics of enamel and dentin by XRD method, J. Wuhan. Univ. Technol. Mater. Sci. Ed., 2006, 21(1), 9–12 http://dx.doi.org/10.1007/BF02861458[Crossref]
  • [24] Arnold W.H., Konopka S., Gaengler P., Qualitative and quantitative assessment of intertubular dentin formation in human natural carious lesions, Calcif. Tissue Int., 2001, 69, 268–273 http://dx.doi.org/10.1007/s002230020023[Crossref]
  • [25] Kodaka T., Debari K., Yamada M., Physicochemical and morphological studies of horse dentin, J. Electron. Microsc., 1991, 40(6), 385–391
  • [26] Sakoolnamarka R., Burrow M.F., Swain M., Tyas M.J., Microhardness and Ca:P ratio of carious and Carisolv treated caries-affected dentin using an ultra-micro-indentation system and energy dispersive analysis of x-rays-a pilot study, Aust. Dent. J., 2005, 50(4), 246–250 http://dx.doi.org/10.1111/j.1834-7819.2005.tb00368.x[Crossref]
  • [27] Lakomaa E.L., Rytömaa I., Mineral composition of enamel and dentin of primary and permanent teeth in Finland, Scand. J. Dent. Res., 1977, 85(2), 89–95
  • [28] Coradazzi J.L., Silva C.M., Pereira J.C., Francischone C.E., Shear bond strength of an adhesive system in human, bovine and swinish teeth, Rev. Fac. Odontol. Bauru., 1998, 6(4), 29–33
  • [29] Krifka S., Börzsönyi A., Koch A., Hiller K.A., Schmalz G., Friedl K.H., Bond strength of adhesive systems to dentin and enamel-human vs. bovine primary teeth in vitro, Dent. Mater., 2008, 24(7), 888–894 http://dx.doi.org/10.1016/j.dental.2007.11.003[Crossref]
  • [30] Marshall G.W. Jr., Marshall S.J., Kinney J.H., Balooch M., The dentin substrate: structure and properties related to bonding, J. Dent., 1997, 25(6), 441–458 http://dx.doi.org/10.1016/S0300-5712(96)00065-6[Crossref]
  • [31] Inoue T., Saito M., Yamamoto M., Debari K., Kou K., Nishimura F., et al., Comparison of nanohardness between coronal and radicular intertubular dentin, Dent. Mater. J., 2009, 28(3), 295–300 http://dx.doi.org/10.4012/dmj.28.295[Crossref][WoS]
  • [32] Chu C.Y., Kuo T.C., Chang S.F., Shyu Y.C., Lin C.P., Comparison of the microstructure of crown and root dentin by a scanning electron microscopic study, J. Dent. Sci., 2010, 5(1), 14–20 http://dx.doi.org/10.1016/S1991-7902(10)60003-7[Crossref][WoS]
  • [33] Schilke R., Lisson J.A., Bauss O., Geurtsen W., Comparison of the number and diameter of dentinal tubules in human and bovine dentin by scanning electron microscopic investigation, Arch. Oral Biol., 2000, 45(5), 355–361 http://dx.doi.org/10.1016/S0003-9969(00)00006-6[Crossref]
  • [34] Schellenberg U., Krey G., Bosshardt D., Nair P.N., Numerical density of dentinal tubules at the pulpal wall of human permanent premolars and third molars, J. Endod., 1992, 18(3), 104–109 http://dx.doi.org/10.1016/S0099-2399(06)81308-7[Crossref]
  • [35] Ferrari M., Mannocci F., Vichi A., Cagidiaco M.C., Mjör I.A., Bonding to root canal: structural characteristics of the substrate, Am. J. Dent., 2000, 13(5), 255–260
  • [36] Calt S., Serper A., Time-dependent effects of EDTA on dentin structures, J. Endod., 2002, 28(1), 17–19 http://dx.doi.org/10.1097/00004770-200201000-00004[Crossref]
  • [37] Van Meerbeeck B., Inokoshi S., Braem M., Lambrechts P., Vanherle G., Morphological aspects of the resin-dentin interdiffusion zone with different dentin adhesive systems, J. Dent. Res., 1992, 71, 1530–1540 http://dx.doi.org/10.1177/00220345920710081301[Crossref]
  • [38] Muylle S., Simoens P., Lauwers H., The distribution of intratubular dentin in equine incisors: a scanning electron microscopic study, Equine Vet. J., 2001, 33(1), 65–69 http://dx.doi.org/10.2746/042516401776767395[Crossref]
  • [39] Pashley D.H.. Dynamics of the pulpo-dentin complex, Crit. Rev. Oral Biol. Med., 1996, 7(2), 104–133 http://dx.doi.org/10.1177/10454411960070020101[Crossref]
  • [40] Lloyd G.E., Atomic number and crystallographic contrast images with the SEM: a review of backscattered electron techniques, Mineral. Mag., 1987, 51, 3–19 http://dx.doi.org/10.1180/minmag.1987.051.359.02[Crossref]
  • [41] Murray M.M., The chemical composition of teeth: The calcium, magnesium and phosphorus contents of the teeth of different animals. A brief consideration of the mechanisn of calcification, Biochem. J., 1936, 30(9), 1567–1571
  • [42] Ballal N.V., Mala K., Bhat K.S., Evaluation of decalcifying effect of maleic acid and EDTA on root canal dentin using energy dispersive spectrometer, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2011, 112(2), 78–84 http://dx.doi.org/10.1016/j.tripleo.2011.01.034[Crossref][WoS]
  • [43] Yoshiyama M., Noiri Y., Ozaki K., Uchida A., Ishikawa Y., Ishida H., Transmission electron microscopic characterization of hypersensitive human radicular dentin, J. Dent. Res., 1990, 69, 1293–1297 http://dx.doi.org/10.1177/00220345900690061401[Crossref]
  • [44] Lopes F.M., Markarian R.A., Sendyk C.L., Duarte C.P., Arana-Chavez V.E., Swine teeth as potential substitutes for in vitro studies in tooth adhesion: a SEM observation, Arch. Oral Biol., 2006, 51(7), 548–551 http://dx.doi.org/10.1016/j.archoralbio.2006.01.009[Crossref]
  • [45] Mannocci F., Pilecki P., Bertelli E., Watson T.F., Density of dentinal tubules affects the tensile strength of root dentin, Dent. Mater., 2004, 20(3), 293–296 http://dx.doi.org/10.1016/S0109-5641(03)00106-4[Crossref]
  • [46] Ari H., Erdemir A., Effects of endodontic irrigation solutions on mineral content of root canal dentin using ICP-AES technique, J. Endod., 2005, 31(3), 187–189 http://dx.doi.org/10.1097/01.don.0000137643.54109.81[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11536-013-0295-x
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.