Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2014 | 9 | 3 | 500-504

Article title

Quiescent satellite glial cells of the adult trigeminal ganglion


Title variants

Languages of publication



Sensory ganglia comprise functional units built up by neurons and satellite glial cells (SGCs). In animal species there was proven the presence of neuronoglial progenitor cells in adult samples. Such neural crest-derived progenitors were found in immunohistochemistry (IHC). These findings were not previously documented in transmission electron microscopy (TEM). It was thus aimed to assess in TEM if cells of the human adult trigeminal ganglion indeed have ultrastructural features to qualify for a progenitor, or quiescent phenotype. Trigeminal ganglia were obtained from fifteen adult donor cadavers. In TEM, cells with heterochromatic nuclei, a pancytoplasmic content of free ribosomes, few perinuclear mitochondria, poor developed endoplasmic reticulum, lack of Golgi complexes and membrane trafficking specializations, were found included in the neuronal envelopes built-up by SGCs. The ultrastructural pattern was strongly suggestive for these cells being quiescent progenitors. However, further experiments should correlate the morphologic and immune phenotypes of such cells.










Physical description


1 - 6 - 2014
8 - 7 - 2014


  • Faculty of Geography, University of Bucharest, 050107, Bucharest, Romania
  • Institute of Biology of Bucharest — The Romanian Academy, 060031, Bucharest, Romania
  • Faculty of Medicine, Pharmacy and Dental Medicine, “Vasile Goldiş” Western University, 310045, Arad, Romania


  • [1] Lazarov N. E., Comparative analysis of the chemical neuroanatomy of the mammalian trigeminal ganglion and mesencephalic trigeminal nucleus, Prog Neurobiol, 2002, 66, 19–59 http://dx.doi.org/10.1016/S0301-0082(01)00021-1[Crossref]
  • [2] van Velzen M., Laman J. D., Kleinjan A., Poot A., Osterhaus A. D., Verjans G. M., Neuron-interacting satellite glial cells in human trigeminal ganglia have an APC phenotype, J Immunol, 2009, 183, 2456–2461 http://dx.doi.org/10.4049/jimmunol.0900890[WoS][Crossref]
  • [3] Durham P. L., Garrett F. G., Development of functional units within trigeminal ganglia correlates with increased expression of proteins involved in neuron-glia interactions, Neuron Glia Biol, 2010, doi:10.1017/S1740925X100002321-11 [WoS][Crossref]
  • [4] Damodaram S., Thalakoti S., Freeman S. E., Garrett F. G., Durham P. L., Tonabersat inhibits trigeminal ganglion neuronal-satellite glial cell signaling, Headache, 2009, 49, 5–20 http://dx.doi.org/10.1111/j.1526-4610.2008.01262.x[Crossref]
  • [5] Levy Bde F., Cunha Jdo C., Chadi G., Cellular analysis of S100Beta and fibroblast growth factor-2 in the dorsal root ganglia and sciatic nerve of rodents. focus on paracrine actions of activated satellite cells after axotomy, Int J Neurosci, 2007, 117, 1481–1503 http://dx.doi.org/10.1080/15569520701502716[WoS]
  • [6] Capuano A., De Corato A., Lisi L., Tringali G., Navarra P., Dello Russo C., Proinflammatoryactivated trigeminal satellite cells promote neuronal sensitization: relevance for migraine pathology, Mol Pain, 2009, 5, 43 http://dx.doi.org/10.1186/1744-8069-5-43[Crossref][WoS]
  • [7] Takeda M., Takahashi M., Matsumoto S., Contribution of the activation of satellite glia in sensory ganglia to pathological pain, Neurosci Biobehav Rev, 2009, 33, 784–792 http://dx.doi.org/10.1016/j.neubiorev.2008.12.005[Crossref][WoS]
  • [8] Rusu M. C., Pop F., Hostiuc S., Dermengiu D., Lala A. I., Ion D. A., Manoiu V. S., Mirancea N., The human trigeminal ganglion: c-kit positive neurons and interstitial cells, Ann Anat, 2011, 193, 403–411 http://dx.doi.org/10.1016/j.aanat.2011.06.005[WoS][Crossref]
  • [9] Lagares A., Li H. Y., Zhou X. F., Avendano C., Primary sensory neuron addition in the adult rat trigeminal ganglion: evidence for neural crest glioneuronal precursor maturation, J Neurosci, 2007, 27, 7939–7953 http://dx.doi.org/10.1523/JNEUROSCI.1203-07.2007[WoS][Crossref]
  • [10] Li H. Y., Say E. H., Zhou X. F., Isolation and characterization of neural crest progenitors from adult dorsal root ganglia, Stem Cells, 2007, 25, 2053–2065 http://dx.doi.org/10.1634/stemcells.2007-0080[Crossref][WoS]
  • [11] Singh R. P., Cheng Y. H., Nelson P., Zhou F. C., Retentive multipotency of adult dorsal root ganglia stem cells, Cell Transplant, 2009, 18, 55–68 http://dx.doi.org/10.3727/096368909788237177[WoS][Crossref]
  • [12] Yu L., Ding Y., Spencer A., Ma J., Lu R., Rudkin B. B., Yuan C., Dorsal root ganglion progenitors differentiate to gamma-aminobutyric acid- and choline acetyltransferase-positive neurons, Neural Regen Res, 2012, 7, 485–491 [WoS]
  • [13] Vukojevic K., Skobic H., Saraga-Babic M., Proliferation and differentiation of glial and neuronal progenitors in the development of human spinal ganglia, Differentiation, 2009, 78, 91–98 http://dx.doi.org/10.1016/j.diff.2009.05.004[Crossref][WoS]
  • [14] Aihara Y., Hayashi Y., Hirata M., Ariki N., Shibata S., Nagoshi N., Nakanishi M., Ohnuma K., Warashina M., Michiue T., Uchiyama H., Okano H., Asashima M., Furue M. K., Induction of neural crest cells from mouse embryonic stem cells in a serum-free monolayer culture, Int J Dev Biol, 2010, 54, 1287–1294 http://dx.doi.org/10.1387/ijdb.103173ya[Crossref][WoS]
  • [15] Vukojevic K., Petrovic D., Saraga-Babic M., Nestin expression in glial and neuronal progenitors of the developing human spinal ganglia, Gene Expr Patterns, 2010, 10, 144–151 http://dx.doi.org/10.1016/j.gep.2009.12.001[Crossref]
  • [16] Calderone A., Nestin+ cells and healing the infarcted heart, Am J Physiol Heart Circ Physiol, 2012, 302, H1–9 http://dx.doi.org/10.1152/ajpheart.00716.2011[Crossref]
  • [17] Rusu M. C., Hostiuc S., Loreto C., Paduraru D., Nestin immune labeling in human adult trigeminal ganglia, Acta Histochem, 2013, 115, 86–88 http://dx.doi.org/10.1016/j.acthis.2012.04.007[Crossref][WoS]
  • [18] Wiese C., Rolletschek A., Kania G., Blyszczuk P., Tarasov K. V., Tarasova Y., Wersto R. P., Boheler K. R., Wobus A. M., Nestin expression-a property of multi-lineage progenitor cells?, Cell Mol Life Sci, 2004, 61, 2510–2522 http://dx.doi.org/10.1007/s00018-004-4144-6[Crossref]
  • [19] Gherghiceanu M., Popescu L. M., Cardiomyocyte precursors and telocytes in epicardial stem cell niche: electron microscope images, J Cell Mol Med, 2010, 14, 871–877 http://dx.doi.org/10.1111/j.1582-4934.2010.01060.x[Crossref][WoS]
  • [20] Popescu L. M., Manole C. G., Gherghiceanu M., Ardelean A., Nicolescu M. I., Hinescu M. E., Kostin S., Telocytes in human epicardium, J Cell Mol Med, 2010, 14, 2085–2093 http://dx.doi.org/10.1111/j.1582-4934.2010.01129.x[WoS][Crossref]
  • [21] Brohl D., Vasyutina E., Czajkowski M. T., Griger J., Rassek C., Rahn H. P., Purfurst B., Wende H., Birchmeier C., Colonization of the satellite cell niche by skeletal muscle progenitor cells depends on Notch signals, Dev Cell, 2012, 23, 469–481 http://dx.doi.org/10.1016/j.devcel.2012.07.014[Crossref]
  • [22] Didilescu A. C., Rusu M. C., Nini G., Dental pulp as a stem cell reservoir, Rom J Morphol Embryol, 2013, 54, 473–478
  • [23] Rusu M. C., Dermengiu D., Loreto C., Motoc A. G., Pop E., Astrocitary niches in human adult medulla oblongata, Acta Histochem, 2013, 115, 296–300 http://dx.doi.org/10.1016/j.acthis.2012.07.004[Crossref][WoS]
  • [24] Zammit P. S., Partridge T. A., Yablonka-Reuveni Z., The skeletal muscle satellite cell: the stem cell that came in from the cold, J Histochem Cytochem, 2006, 54, 1177–1191 http://dx.doi.org/10.1369/jhc.6R6995.2006[Crossref]
  • [25] Rusu M. C., Pop F., Hostiuc S., Dermengiu D., Lala A. I., Ion D. A., Manoiu V. S., Mirancea N., The human trigeminal ganglion: c-kit positive neurons and interstitial cells, Ann Anat, 2011, 193, 403–411 http://dx.doi.org/10.1016/j.aanat.2011.06.005[WoS][Crossref]
  • [26] Shi X., Garry D. J., Muscle stem cells in development, regeneration, and disease, Genes Dev, 2006, 20, 1692–1708 http://dx.doi.org/10.1101/gad.1419406[Crossref]
  • [27] Matsuura S., Shimizu K., Shinoda M., Ohara K., Ogiso B., Honda K., Katagiri A., Sessle B. J., Urata K., Iwata K., Mechanisms underlying ectopic persistent tooth-pulp pain following pulpal inflammation, PLoS One, 2013, 8, e52840 http://dx.doi.org/10.1371/journal.pone.0052840[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.