Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2014 | 9 | 1 | 74-79

Article title

The prospects of brain - computer interface applications in children


Title variants

Languages of publication



The restoring of motor functions in adults through brain-computer interface applications is widely studied in the contemporary literature. But there is a lack of similar analyses and research on the application of brain-computer interfaces in the neurorehabilitation of children. There is a need for expanded knowledge in the aforementioned area. This article aims at investigating the extent to which the available opportunities in the area of neurorehabilitation and neurological physiotherapy of children with severe neurological deficits using brain-computer interfaces are being applied, including our own concepts, research and observations.










Physical description


1 - 2 - 2014
4 - 2 - 2014


  • Rehabilitation Clinic, The 10th Military Clinical Hospital with Polyclinic, Bydgoszcz, Poland


  • [1] Mikołajewska E. Neurorehabilitation in pediatric stroke. J Health Sci, 2012, 2, 23–31 http://dx.doi.org/10.5923/j.health.20120204.01[Crossref]
  • [2] Mikołajewska E., Mikołajewski D. Neuroprostheses for increasing disabled patients’ mobility and control. Adv Clin Exp Med, 2012, 21, 263–272 [PubMed]
  • [3] Breshears J. D., Gaona C. M., Roland J. L., et al. Decoding motor signals from the pediatric cortex: implications for brain-computer interfaces in children. Pediatrics, 2011, 128, e160–168 http://dx.doi.org/10.1542/peds.2010-1519[WoS][Crossref]
  • [4] Artemowicz B., Sobaniec P. Badanie EEG w neuropediatrii [EEG investigation in neuropediatrics (article in Polish)]. Neurologia Dziecięca, 2011, 20, 89–95
  • [5] Roland J., Miller K., Freudenburg Z., et al. The effect of age on human motor electrocorticographic signals and implications for brain-computer interface applications. J Neural Eng, 2011, 8, 046013 http://dx.doi.org/10.1088/1741-2560/8/4/046013[WoS][Crossref]
  • [6] Kellis S. S., House P. A., Thomson K. E., et al. Human neocortical electrical activity recorded on nonpenetrating microwire arrays: applicability for neuroprostheses. Neurosurg Focus, 2009, 27, E9 http://dx.doi.org/10.3171/2009.4.FOCUS0974[WoS][Crossref]
  • [7] Cincotti F., Mattia D., Aloise F., et al. Non-invasive brain-computer interface system: towards its application as assistive technology. Brain Res Bull, 2008, 75, 796–803 http://dx.doi.org/10.1016/j.brainresbull.2008.01.007[WoS][Crossref]
  • [8] Ehlers J., Valbuena D., Stiller A., Gräser A. Age-specific mechanisms in an SSVEP-based BCI scenario: evidences from spontaneous rhythms and neuronal oscillators. Comput Intell Neurosci, 2012, 967305 [WoS]
  • [9] Felton E. A., Williams J. C., Vanderheiden G. C., Radwin R. G. Mental workload during brain-computer interface training. Ergonomics, 2012, 55, 526–537 http://dx.doi.org/10.1080/00140139.2012.662526[Crossref][WoS]
  • [10] Lim C. G., Lee T. S., Guan C., et al. A brain-computer interface based attention training program for treating attention deficit hyperactivity disorder. PLoS One, 2012, 7, e46692 [PubMed][WoS]
  • [11] Egeth M. A. „Turing Test” and BCI for locked-in children and adults. Med Hypotheses, 2008, 70, 1067 http://dx.doi.org/10.1016/j.mehy.2007.12.001[Crossref][WoS]
  • [12] Gomes H., Duff M., Barnhardt J., et al. Development of auditory selective attention: event-related potential measures of channel selection and target detection. Psychophysiology, 2007, 44, 711–727 http://dx.doi.org/10.1111/j.1469-8986.2007.00555.x[Crossref]
  • [13] Sanders L. D., Stevens C., Coch D., et al. Selective auditory attention in 3- to 5-year-old children: an event-related potential study. Neuropsychologia, 2006, 44, 2126–2138 http://dx.doi.org/10.1016/j.neuropsychologia.2005.10.007[Crossref]
  • [14] Sanders L. D., Zobel B. H. Nonverbal spatially selective attention in 4- and 5-year-old children. Dev Cogn Neurosci, 2012, 2, 317–328 http://dx.doi.org/10.1016/j.dcn.2012.03.004[Crossref]
  • [15] van den Brand R., Heutschi J., Barraud Q., et al. Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science, 2012, 336, 1182–1185 http://dx.doi.org/10.1126/science.1217416[Crossref][WoS]
  • [16] Dominici N., Keller U., Vallery H., et al. Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders. Nature Medicine, 2012, 18, 1142–1147 http://dx.doi.org/10.1038/nm.2845[WoS][Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.