Preferences help
enabled [disable] Abstract
Number of results
2014 | 9 | 2 | 272-278
Article title

Adverse reaction of a combined treatment for unresectable liver cancer

Title variants
Languages of publication
To investigate the adverse reactions of transcatheter arterial chemoembolization (TACE) combined with trastuzumab in the treatment of unresectable live cancer, 85 unresectable liver cancer patients were treated with 35 mg epirubicin, with lipiodol and gelatin sponge granule as the embolic agent, and trastuzumab (4mg/kg) was administered intravenously. All the adverse reactions were investigated by blood routine examination and the checking of liver, renal and thyroid functions on the postoperative 2nd and 30th day. No patients died of direct medication. The main adverse reactions included haematological toxicity, liver function lesion and postoperative syndromes such as nausea, vomiting, fever and liver area aching. Two days after the treatment, the amount of the serum total bilirubin (TB) and white blood cell (WBC) increased dramatically, while platelet (PLT) changed a little, and creatinine (Cr) and blood urea nitrogen (BUN) did not change at all. Thirty days after the treatment, blood routine, liver and renal functions were examined, demonstrating that the liver function remained unchanged, PLT decreased apparently, WBC was lower, and Cr and BUN changed slightly compared to those before the treatment. The combined treatment is safe for unresectable liver cancer and thus can be used as a routine intervention method.
Physical description
1 - 4 - 2014
13 - 2 - 2014
  • Department of General Surgery, Affiliated Hospital of Inner Mongolia medical university, Huhhot, 010050, P.R.China
  • [1] Namboodiri A.M., Pandey J.P., Differential inhibition of trastuzumab- and cetuximab-induced cytotoxicity of cancer cells by immunoglobulin G1 expressing different GM allotypes, Clin. Exp. Immunol., 2011, 166, 361–365[Crossref][WoS]
  • [2] Kostyal D., Welt R.S., Danko J., Shay T., Lanning C., Horton K., et al., Trastuzumab and lapatinib modulation of HER2 tyrosine/threonine phosphorylation and cell signaling, Med. Oncol., 2012, 29, 1486–1494[WoS][Crossref]
  • [3] Sawaki M., Mukai H., Tokudome N., Nakayama T., Taira N., Mizuno T., et al., Safety of adjuvant trastuzumab for HER-2-overexpressing elderly breast cancer patients: a multicenter cohort study, Breast Cancer, 2012, 19, 253–258[Crossref]
  • [4] Abe H., Umeda T., Kawai Y., Tanaka M., Mori T., Cho H., et al., [Adjuvant trastuzumab can be infused safely over 30 minutes], Gan To Kagaku Ryoho, 2010, 37, 1887–1891
  • [5] Fujita T., Doihara H., Kawasaki K., Takabatake D., Takahashi H., Washio K., et al., PTEN activity could be a predictive marker of trastuzumab efficacy in the treatment of ErbB2-overexpressing breast cancer, Br. J. Cancer, 2006, 94, 247–252[Crossref]
  • [6] Perez E.A., Jenkins R.B., Dueck A.C., Wiktor A.E., Bedroske P.P., Anderson S.K., et al., C-MYC alterations and association with patient outcome in early-stage HER2-positive breast cancer from the north central cancer treatment group N9831 adjuvant trastuzumab trial, J. Clin. Oncol., 2011, 29, 651–659[Crossref]
  • [7] Esteva F.J., Guo H., Zhang S., Santa-Maria C., Stone S., Lanchbury J.S., et al., PTEN, PIK3CA, p-AKT, and p-p70S6K status: association with trastuzumab response and survival in patients with HER2-positive metastatic breast cancer, Am. J. Pathol., 2010, 177, 1647–1656[WoS][Crossref]
  • [8] Todeschini P., Cocco E., Bellone S., Varughese J., Lin K., Carrara L., et al., Her2/neu extracellular domain shedding in uterine serous carcinoma: implications for immunotherapy with trastuzumab, Br. J. Cancer, 2011, 105, 1176–1182[Crossref]
  • [9] Nagahisa Y., Imai S., Yamaguchi K., Okabe M., Tsuruta A., Kawamoto K., et al., [A case of liver metastasis of breast cancer responding to trastuzumab plus weekly paclitaxel chemotherapy maintaining CR for 30 months], Gan To Kagaku Ryoho, 2007, 34, 1501–1503
  • [10] Horiguchi J., Oyama T., Takata D., Rokutanda N., Nagaoka R., Odawara H., et al., Pathological complete response and prognosis in patients receiving neoadjuvant paclitaxel and trastuzumab with and without anthracyclines for stage II and III, HER2-positive operable breast cancer: a single-institute experience, Anticancer Res., 2011, 31, 3041–3046
  • [11] Takahashi T., Kochi M., Kanamori N., Kaiga T., Funada T., Fujii M., et al., [Complete remission with FLEP chemotherapy for multiple liver metastasis from alpha-fetoprotein-producing gastric cancer-report of a case], Gan To Kagaku Ryoho, 2009, 36, 1885–1888
  • [12] Yao Y., [Effects of Feiji decoction for soothing the liver combined with psychotherapy on quality of life in primary lung cancer patients], Zhongguo Fei Ai Za Zhi, 2012, 15, 27–33
  • [13] Tada A., Ogawa M., Inagaki J., Horikoshi N., Inoue K., Yamazaki H., et al., [Arterial infusion of combination chemotherapy consisting of adriamycin and mitomycin C for liver metastases of breast cancer], Gan To Kagaku Ryoho, 1986, 13, 70–74 [PubMed]
  • [14] Osako T., Ito Y., Takahashi S., Tokudome N., Iwase T., Hatake K., Efficacy and safety of trastuzumab plus capecitabine in heavily pretreated patients with HER2-positive metastatic breast cancer, Cancer Chemother. Pharmacol., 2008, 62, 159–164[WoS][Crossref]
  • [15] Kimura M., Tominaga T., Outstanding problems with response evaluation criteria in solid tumors (RECIST) in breast cancer, Breast Cancer, 2002, 9, 153–159[Crossref]
  • [16] Pectasides D., Pectasides E., Maintenance or consolidation therapy in advanced ovarian cancer, Oncology, 2006, 70, 315–324[Crossref]
  • [17] Zak Y., Rhoads K.F., Visser B.C., Predictors of surgical intervention for hepatocellular carcinoma: race, socioeconomic status, and hospital type, Arch. Surg., 2011, 146, 778–784[Crossref]
  • [18] Li B., Yu J., Wang L., Li C., Zhou T., Zhai L., Xing L., Study of local three-dimensional conformal radiotherapy combined with transcatheter arterial chemoembolization for patients with stage III hepatocellular carcinoma, Am. J. Clin. Oncol., 2003, 26, e92–99 [Crossref]
  • [19] Sahara S., Kawai N., Sato M., Tanaka T., Ikoma A., Nakata K., et al., Prospective Evaluation of Transcatheter Arterial Chemoembolization (TACE) with Multiple Anti-Cancer Drugs (Epirubicin, Cisplatin, Mitomycin C, 5-Fluorouracil) Compared with TACE with Epirubicin for Treatment of Hepatocellular Carcinoma, Cardiovasc. Intervent. Radiol., 2012, doi: 10.1007/s00270-012-0352-x [Crossref]
  • [20] Chen S., Li B., Xie H., Xu L., Niu G., Fan K., et al., Phase I clinical trial of targeted therapy using 131I-Hepama-1 mAb in patients with hepatocellular carcinoma, Cancer Biother. Radiopharm., 2004, 19, 589–600[Crossref]
  • [21] Wang S.E., Xiang B., Guix M., Olivares M.G., Parker J., Chung C.H., et al., Transforming growth factor beta engages TACE and ErbB3 to activate phosphatidylinositol-3 kinase/Akt in ErbB2-overexpressing breast cancer and desensitizes cells to trastuzumab, Mol. Cell Biol., 2008, 28, 5605–5620[WoS][Crossref]
  • [22] Yamaguchi K., Chijiiwa K., Torato N., Kinoshita M., Tanaka M., Ki-ras codon 12 point and P53 mutations: a molecular examination of the main tumor, liver, portal vein, peripheral arterial blood and para-aortic lymph node in pancreatic cancer, Am. J. Gastroenterol., 2000, 95, 1939–1945[Crossref]
  • [23] Le Brun-Ly V., Martin J., Venat-Bouvet L., Darodes N., Labourey J.L., Genet D., et al., Cardiac toxicity with capecitabine, vinorelbine and trastuzumab therapy: case report and review of fluoropyrimidinerelated cardiotoxicity, Oncology, 2009, 76, 322–325 [Crossref]
  • [24] Ritter C.O., Wartenberg M., Mottok A., Steger U., Goltz J.P., Hahn D., et al., Spontaneous liver rupture after treatment with drug-eluting beads, Cardiovasc. Intervent. Radiol., 2012, 35, 198–202[Crossref]
  • [25] Fromigue J., De Baere T., Baudin E., Dromain C., Leboulleux S., Schlumberger M., Chemoembolization for liver metastases from medullary thyroid carcinoma, J. Clin. Endocrinol. Metab., 2006, 91, 2496–2499[Crossref]
  • [26] Ruszniewski P., O’Toole D., Ablative therapies for liver metastases of gastroenteropancreatic endocrine tumors, Neuroendocrinology, 2004, 80(Suppl 1), 74–78[Crossref]
  • [27] Tu C.M., Chu K.M., Yang S.P., Cheng S.M., Wang W.B., Trastuzumab (Herceptin)-associated cardiomyopathy presented as new onset of complete left bundle-branch block mimicking acute coronary syndrome: a case report and literature review, Am. J. Emerg. Med., 2009, 27, e901–903
  • [28] Yan X., Morgan J.P., Neuregulin1 as novel therapy for heart failure, Curr. Pharm. Des., 2011, 17, 1808–1817[Crossref]
  • [29] Peltier M., Houpe D., Cohen-Solal A., Beguin M., Levy F., Tribouilloy C., Treatment practices in heart failure with preserved left ventricular ejection fraction: a prospective observational study, Int. J. Cardiol., 2007, 118, 363–369[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.