Preferences help
enabled [disable] Abstract
Number of results
2013 | 8 | 4 | 377-382
Article title

Chemical robotics - chemotactic drug carriers

Title variants
Languages of publication
In this review we show and describe a concept of designing autonomously moving artificial cells (chemical robots) carrying drugs and having tactic behavior based on artificial chemotaxis. Such systems could help to provide new and more efficient drug delivery applications. Chemical robot can be constructed based on the self-organization - natural “bottom-up” way - of fatty acid or lipid molecules into ordered nano- or micrometer size objects that have the ability to move and respond to environmental stimuli. The idea of using tactic carriers in drug delivery applications can be justified by the fact that cancer sites in the living body have different physiological characters (lower pH and higher resting temperature) compared to normal cells. The proposed “bottom-up” design method for self-propelled objects at small scales for targeted drug delivery applications could realize the original designation of nanoscience proposed 50 years ago by Richard Feynman.
Physical description
1 - 8 - 2013
12 - 6 - 2013
  • Department of Physics, Budapest University of Technology and Economics, H-1111, Budapest, Budafoki út 8, Hungary
  • [1] Freitas Jr. R.A. What is nanomedicine?, Nanomed-Nanaotechnol., 2005, 1, 2–5[Crossref]
  • [2] Freitas Jr. R.A. Nanotechnology, nanomedicine and nanosurgery, Int. J. Surg., 2005, 3, 243–246[Crossref]
  • [3] Freitas R.A. Meeting the challenge of building diamondoid medical nanorobots, Int. J. Robot. Res. 2009, 28, 548–557[Crossref]
  • [4] Cavalcanti A., Shirinzadeh B., Kretly L.C., Medical nanorobotics for diabetes control, Nanomed-Nanaotechnol., 2008, 4, 127–138[Crossref]
  • [5] Grancic P., Stepanek F., Active targeting in a random porous medium by chemical swarm robots with secondary chemical signaling, Phys. Rev. E, 2011, 84, 021925[Crossref]
  • [6] Kagan D., Laocharoensuk R., Zimmerman M., Clawson C., Balasubramanian S., Kang D., et al., Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles, Small, 2010, 6, 2741–2747[Crossref]
  • [7] Patel G.M., Patel G.C., Patel R.B., Patel J.K., Patel M., Nanorobot: A versatile tool in nanomedicine, J. Drug. Target., 2006, 14, 63–67[Crossref]
  • [8] Sundararajan S., Lammert P.E., Zudans A.W., Crespi V.H., Sen A., Catalytic motors for transport of colloidal cargo, Nano Lett., 2008, 8, 1271–1276[Crossref]
  • [9] Tao W.M., Zhang M., A genetic algorithm-based area coverage approach for controlled drug delivery using microrobots, Nanomed-Nanaotechnol., 2005, 1, 91–100[Crossref]
  • [10] Passarella R.J., Spratt D.E., van der Ende A.E., Phillips J.G., Wu H., Sathiyakumar V., et. al., Targeted nanoparticles that deliver a sustained, ispecific release of paclitaxel to irradiated tumors, Cancer Res., 2010, 70, 4550–4559[Crossref]
  • [11] Pierige F., Serafini S., Rossi L., Magnani M., Cellbased drug delivery, Adv. Drug. Deliver. Rev., 2008, 60, 286–295[Crossref]
  • [12] Sutton D., Nasongkla N., Blanco E., Gao J., Functionalized micellar systems for cancer targeted drug delivery, Pharm. Res., 2007, 24, 1029–1046[Crossref]
  • [13] Akyildiz I.F., Brunetti F., Blázquez C., Nanonetworks: A new communication paradigm, Comput. Net. 2008, 52, 2260–2279[Crossref]
  • [14] Freitas R.A., Current status of nanomedicine and medical nanorobotics, J. Comput. Theor. Nanosci., 2005, 2, 1–25
  • [15] Rebolj D., Fischer M., Endy D., Moore T., Sorgo A., Can we grow buildings? Concepts and requirements for automated nano- to meter-scale building, Adv. Eng. Inform., 2011, 25, 390–398[Crossref]
  • [16] Whitesides G.M., Nanoscience, nanotechnology, and chemistry, Small, 2005, 1, 172–179[Crossref]
  • [17] Bishop K.J.M., Wilmer C.E., Soh S., Grzybowski B.A., Nanoscale forces and their uses in self-assembly, Small, 2009, 5, 1600–1630[Crossref]
  • [18] Gormley A.J., Greish K., Ray A., Robinson R., Gustafson J.A., Ghandehari H., Gold nanorod mediated plasmonic photothermal therapy: A tool to enhance macromolecular delivery, Int. J. Pharm., 2011, 415, 315–318[Crossref]
  • [19] Gupta A.K, Gupta M., Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 2005, 26, 3995–4021[Crossref]
  • [20] Nie S., Xing Y., Kim G.J., Simons J.W., Nanotechnology applications in cancer, Annu. Rev. Biomed. Eng., 2007, 9, 257–288[Crossref]
  • [21] Backer M.V., Aloise R., Przekop K., Stoletov K., Backer J.M., Molecular vehicles for targeted drug delivery, Bioconjugate Chem., 2002, 13, 462–467[Crossref]
  • [22] Fredenberg S., Wahlgren M., Reslow M., Axelsson A., The mechanisms of drug release in poly(lacticco-glycolic acid)-based drug delivery systems - A review, Int. J. Pharm., 2011, 415, 34–52[Crossref]
  • [23] Gong G.M., Zhi F., Wang K.K., Tang X.L., Yuan A., Zhao L.L., et. al., Fabrication of a nanocarrier system through self-assembly of plasma protein and its tumor targeting, Nanotechnology, 2011, 22, 295603[Crossref]
  • [24] McTaggart L.E., Halbert G.W., Assessment of polysaccharide gels as drug delivery vehicles, Int. J. Pharm., 1993, 100, 199–206[Crossref]
  • [25] Neerman M.F., Zhang W., Parrish A.R., Simanek E.E., In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery, Int. J. Pharm., 2004, 281, 129–132[Crossref]
  • [26] Peer D., Karp J.M., Hong S., Farokhzad O.C., Margalit R., Langer R., Nanocarriers as an emerging platform for cancer therapy, Nat. Nanotechnol., 2007, 2, 751–760[Crossref]
  • [27] Rosler A., Vandermeulen G.W.M., Klok H.A., Advanced drug delivery devices via self-assembly of amphiphilic block copolymers, Adv. Drug. Deliver. Rev., 2001, 53, 95–108[Crossref]
  • [28] Sudimack J., Lee R.J., Targeted drug delivery via the folate receptor, Adv. Drug. Deliver. Rev., 2000, 41, 147–162[Crossref]
  • [29] Fournier-Bidoz S., Arsenault A.C., Manners I., Ozin G.A., Synthetic self-propelled nanorotors, Chem. Comm., 2005, 441 [Crossref]
  • [30] Ibele M., Mallouk T.E., Sen A., Schooling behavior of light-powered autonomous micromotors in water, Angew. Chem. Int. Ed., 2009, 48, 3308–3312[Crossref]
  • [31] Paxton W.F., Sundararajan S., Mallouk T.E, Sen A., Chemical locomotion, Angew. Chem. Int. Ed., 2006, 45, 5420–5429[Crossref]
  • [32] Shioi A., Ban T., Morimune Y., Autonomously moving colloidal objects that resemble living matter, Entropy, 2010, 12, 2308–2332[Crossref]
  • [33] Dhar P., Fischer T.M., Wang Y., Mallouk T.E., Paxton W.F., Sen A., Autonomously moving nanorods at a viscous interface, Nano Lett., 2006, 6, 66–72[Crossref]
  • [34] Miura T., Oosawa H., Sakai M., Syundou Y., Ban T., Shio A., Autonomous motion of vesicle via ion exchange, Langmuir, 2010, 26, 1610–1618[Crossref]
  • [35] Hanczyc M.M., Toyota T., Ikegami T., Packard N., Sugawara T., Fatty acid chemistry at the oil-water interface: self-propelled oil droplets. J. Am. Chem. Soc., 2007, 129, 9386–9391[Crossref]
  • [36] Toyota T., Maru N., Hanczyc M.M., Ikegami T., Sugawara T., Self-propelled oil droplets consuming “fuel” surfactant, J. Am. Chem. Soc., 2009, 131, 5012–5013[Crossref]
  • [37] Sengupta S., Ibele M.E., Sen A., Fantastic voyage: designing self-powered nanorobots, Angew. Chem. Int. Ed., 2012, 51, 8434–8445[Crossref]
  • [38] Hong Y., Blackman N.M., Kopp N.D., Sen A., Velegol D., Chemotaxis of nonbiological colloidal rods, Phys. Rev. Lett., 2007, 99, 178103[Crossref]
  • [39] Pavlick R.A., Sengupta S., McFadden T., Zhang H., Sen A., A polymerization-powered motor, Angew. Chem. Int. Ed., 2011, 50, 9374–9377[Crossref]
  • [40] Reynolds A.M., Maze-solving by chemotaxis, Phys. Rev. E, 2010, 81, 062901[Crossref]
  • [41] Adamatzky A.I., Computation of shortest path in cellular automata, Math. Comput. Model., 1996, 23, 105–113[Crossref]
  • [42] Fuerstman M.J., Deschatelets P., Kane R., Schwartz A., Kenis P.J.A., Deutch J.M., Whitesides G.M., Solving mazes using microfluidic networks, Langmuir, 2003, 19, 4714–4722[Crossref]
  • [43] Steinbock O., Tóth Á., Showalter K., Navigating complex labyrinths - Optimal paths from chemical waves, Science, 1995, 267, 868–871[Crossref]
  • [44] Reyes D.R., Ghanem M.M., Whitesides G.M., Manz A., Glow discharge in microfluidic chips for visible analog computing, Lab. Chip., 2002, 2, 113–116[Crossref]
  • [45] Nakagaki T., Yamada H., Tóth Á., Intelligence: Maze-solving by an amoeboid organism, Nature, 2001, 407, 470–470[Crossref]
  • [46] Lagzi I., Soh S., Wesson P.J., Browne K.P., Grzybowski B.A., Maze solving by chemotactic droplets, J. Am. Chem. Soc., 2010, 132, 1198–1199[Crossref]
  • [47] Szostak J.W., Bartel D.P., Luisi P.L., Synthesizing life, Nature, 2001, 409, 387–390[Crossref]
  • [48] Yoshida R., Self-oscillating gels driven by the Belousov-Zhabotinsky reaction as novel smart materials, Adv. Mater., 2010, 22, 3463–3483[Crossref]
  • [49] Gallagher F.A., Kettunen M.I., Day S.E., Hu D.E., Ardenkjaer-Larsen J.H., in’t Zandt R., et. al., Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate, Nature, 2008, 453, 940–943[Crossref]
  • [50] Gordon R.T., Hines J.R., Gordon D., Intracellular hyperthermia a biophysical approach to cancer treatment via intracellular temperature and biophysical alterations, Med. Hypotheses, 1979, 5, 83–102[Crossref]
  • [51] Eastoe J., Sánchez-Dominquez M., Vesperinas A., Paul A., Heenan R.K., Grillo I., Photo-stabilised microemulsions, Chem. Commun., 2005, 2785 [Crossref]
  • [52] Hong Y., Velegol D., Chaturvedic N., Sen A., Biomimetic behavior of synthetic particles: from microscopic randomness to macroscopic control, Phys. Chem. Chem. Phys., 2010, 12, 1423–1435[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.