Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2013 | 8 | 4 | 377-382

Article title

Chemical robotics - chemotactic drug carriers



Title variants

Languages of publication



In this review we show and describe a concept of designing autonomously moving artificial cells (chemical robots) carrying drugs and having tactic behavior based on artificial chemotaxis. Such systems could help to provide new and more efficient drug delivery applications. Chemical robot can be constructed based on the self-organization - natural “bottom-up” way - of fatty acid or lipid molecules into ordered nano- or micrometer size objects that have the ability to move and respond to environmental stimuli. The idea of using tactic carriers in drug delivery applications can be justified by the fact that cancer sites in the living body have different physiological characters (lower pH and higher resting temperature) compared to normal cells. The proposed “bottom-up” design method for self-propelled objects at small scales for targeted drug delivery applications could realize the original designation of nanoscience proposed 50 years ago by Richard Feynman.










Physical description


1 - 8 - 2013
12 - 6 - 2013


  • Department of Physics, Budapest University of Technology and Economics, H-1111, Budapest, Budafoki út 8, Hungary


  • [1] Freitas Jr. R.A. What is nanomedicine?, Nanomed-Nanaotechnol., 2005, 1, 2–5 http://dx.doi.org/10.1016/j.nano.2004.11.003[Crossref]
  • [2] Freitas Jr. R.A. Nanotechnology, nanomedicine and nanosurgery, Int. J. Surg., 2005, 3, 243–246 http://dx.doi.org/10.1016/j.ijsu.2005.10.007[Crossref]
  • [3] Freitas R.A. Meeting the challenge of building diamondoid medical nanorobots, Int. J. Robot. Res. 2009, 28, 548–557 http://dx.doi.org/10.1177/0278364908100501[Crossref]
  • [4] Cavalcanti A., Shirinzadeh B., Kretly L.C., Medical nanorobotics for diabetes control, Nanomed-Nanaotechnol., 2008, 4, 127–138 http://dx.doi.org/10.1016/j.nano.2008.03.001[Crossref]
  • [5] Grancic P., Stepanek F., Active targeting in a random porous medium by chemical swarm robots with secondary chemical signaling, Phys. Rev. E, 2011, 84, 021925 http://dx.doi.org/10.1103/PhysRevE.84.021925[Crossref]
  • [6] Kagan D., Laocharoensuk R., Zimmerman M., Clawson C., Balasubramanian S., Kang D., et al., Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles, Small, 2010, 6, 2741–2747 http://dx.doi.org/10.1002/smll.201001257[Crossref]
  • [7] Patel G.M., Patel G.C., Patel R.B., Patel J.K., Patel M., Nanorobot: A versatile tool in nanomedicine, J. Drug. Target., 2006, 14, 63–67 http://dx.doi.org/10.1080/10611860600612862[Crossref]
  • [8] Sundararajan S., Lammert P.E., Zudans A.W., Crespi V.H., Sen A., Catalytic motors for transport of colloidal cargo, Nano Lett., 2008, 8, 1271–1276 http://dx.doi.org/10.1021/nl072275j[Crossref]
  • [9] Tao W.M., Zhang M., A genetic algorithm-based area coverage approach for controlled drug delivery using microrobots, Nanomed-Nanaotechnol., 2005, 1, 91–100 http://dx.doi.org/10.1016/j.nano.2004.11.006[Crossref]
  • [10] Passarella R.J., Spratt D.E., van der Ende A.E., Phillips J.G., Wu H., Sathiyakumar V., et. al., Targeted nanoparticles that deliver a sustained, ispecific release of paclitaxel to irradiated tumors, Cancer Res., 2010, 70, 4550–4559 http://dx.doi.org/10.1158/0008-5472.CAN-10-0339[Crossref]
  • [11] Pierige F., Serafini S., Rossi L., Magnani M., Cellbased drug delivery, Adv. Drug. Deliver. Rev., 2008, 60, 286–295 http://dx.doi.org/10.1016/j.addr.2007.08.029[Crossref]
  • [12] Sutton D., Nasongkla N., Blanco E., Gao J., Functionalized micellar systems for cancer targeted drug delivery, Pharm. Res., 2007, 24, 1029–1046 http://dx.doi.org/10.1007/s11095-006-9223-y[Crossref]
  • [13] Akyildiz I.F., Brunetti F., Blázquez C., Nanonetworks: A new communication paradigm, Comput. Net. 2008, 52, 2260–2279 http://dx.doi.org/10.1016/j.comnet.2008.04.001[Crossref]
  • [14] Freitas R.A., Current status of nanomedicine and medical nanorobotics, J. Comput. Theor. Nanosci., 2005, 2, 1–25
  • [15] Rebolj D., Fischer M., Endy D., Moore T., Sorgo A., Can we grow buildings? Concepts and requirements for automated nano- to meter-scale building, Adv. Eng. Inform., 2011, 25, 390–398 http://dx.doi.org/10.1016/j.aei.2010.08.006[Crossref]
  • [16] Whitesides G.M., Nanoscience, nanotechnology, and chemistry, Small, 2005, 1, 172–179 http://dx.doi.org/10.1002/smll.200400130[Crossref]
  • [17] Bishop K.J.M., Wilmer C.E., Soh S., Grzybowski B.A., Nanoscale forces and their uses in self-assembly, Small, 2009, 5, 1600–1630 http://dx.doi.org/10.1002/smll.200900358[Crossref]
  • [18] Gormley A.J., Greish K., Ray A., Robinson R., Gustafson J.A., Ghandehari H., Gold nanorod mediated plasmonic photothermal therapy: A tool to enhance macromolecular delivery, Int. J. Pharm., 2011, 415, 315–318 http://dx.doi.org/10.1016/j.ijpharm.2011.05.068[Crossref]
  • [19] Gupta A.K, Gupta M., Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 2005, 26, 3995–4021 http://dx.doi.org/10.1016/j.biomaterials.2004.10.012[Crossref]
  • [20] Nie S., Xing Y., Kim G.J., Simons J.W., Nanotechnology applications in cancer, Annu. Rev. Biomed. Eng., 2007, 9, 257–288 http://dx.doi.org/10.1146/annurev.bioeng.9.060906.152025[Crossref]
  • [21] Backer M.V., Aloise R., Przekop K., Stoletov K., Backer J.M., Molecular vehicles for targeted drug delivery, Bioconjugate Chem., 2002, 13, 462–467 http://dx.doi.org/10.1021/bc0155770[Crossref]
  • [22] Fredenberg S., Wahlgren M., Reslow M., Axelsson A., The mechanisms of drug release in poly(lacticco-glycolic acid)-based drug delivery systems - A review, Int. J. Pharm., 2011, 415, 34–52 http://dx.doi.org/10.1016/j.ijpharm.2011.05.049[Crossref]
  • [23] Gong G.M., Zhi F., Wang K.K., Tang X.L., Yuan A., Zhao L.L., et. al., Fabrication of a nanocarrier system through self-assembly of plasma protein and its tumor targeting, Nanotechnology, 2011, 22, 295603 http://dx.doi.org/10.1088/0957-4484/22/29/295603[Crossref]
  • [24] McTaggart L.E., Halbert G.W., Assessment of polysaccharide gels as drug delivery vehicles, Int. J. Pharm., 1993, 100, 199–206 http://dx.doi.org/10.1016/0378-5173(93)90091-S[Crossref]
  • [25] Neerman M.F., Zhang W., Parrish A.R., Simanek E.E., In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery, Int. J. Pharm., 2004, 281, 129–132 http://dx.doi.org/10.1016/j.ijpharm.2004.04.023[Crossref]
  • [26] Peer D., Karp J.M., Hong S., Farokhzad O.C., Margalit R., Langer R., Nanocarriers as an emerging platform for cancer therapy, Nat. Nanotechnol., 2007, 2, 751–760 http://dx.doi.org/10.1038/nnano.2007.387[Crossref]
  • [27] Rosler A., Vandermeulen G.W.M., Klok H.A., Advanced drug delivery devices via self-assembly of amphiphilic block copolymers, Adv. Drug. Deliver. Rev., 2001, 53, 95–108 http://dx.doi.org/10.1016/S0169-409X(01)00222-8[Crossref]
  • [28] Sudimack J., Lee R.J., Targeted drug delivery via the folate receptor, Adv. Drug. Deliver. Rev., 2000, 41, 147–162 http://dx.doi.org/10.1016/S0169-409X(99)00062-9[Crossref]
  • [29] Fournier-Bidoz S., Arsenault A.C., Manners I., Ozin G.A., Synthetic self-propelled nanorotors, Chem. Comm., 2005, 441 [Crossref]
  • [30] Ibele M., Mallouk T.E., Sen A., Schooling behavior of light-powered autonomous micromotors in water, Angew. Chem. Int. Ed., 2009, 48, 3308–3312 http://dx.doi.org/10.1002/anie.200804704[Crossref]
  • [31] Paxton W.F., Sundararajan S., Mallouk T.E, Sen A., Chemical locomotion, Angew. Chem. Int. Ed., 2006, 45, 5420–5429 http://dx.doi.org/10.1002/anie.200600060[Crossref]
  • [32] Shioi A., Ban T., Morimune Y., Autonomously moving colloidal objects that resemble living matter, Entropy, 2010, 12, 2308–2332 http://dx.doi.org/10.3390/e12112308[Crossref]
  • [33] Dhar P., Fischer T.M., Wang Y., Mallouk T.E., Paxton W.F., Sen A., Autonomously moving nanorods at a viscous interface, Nano Lett., 2006, 6, 66–72 http://dx.doi.org/10.1021/nl052027s[Crossref]
  • [34] Miura T., Oosawa H., Sakai M., Syundou Y., Ban T., Shio A., Autonomous motion of vesicle via ion exchange, Langmuir, 2010, 26, 1610–1618 http://dx.doi.org/10.1021/la9038599[Crossref]
  • [35] Hanczyc M.M., Toyota T., Ikegami T., Packard N., Sugawara T., Fatty acid chemistry at the oil-water interface: self-propelled oil droplets. J. Am. Chem. Soc., 2007, 129, 9386–9391 http://dx.doi.org/10.1021/ja0706955[Crossref]
  • [36] Toyota T., Maru N., Hanczyc M.M., Ikegami T., Sugawara T., Self-propelled oil droplets consuming “fuel” surfactant, J. Am. Chem. Soc., 2009, 131, 5012–5013 http://dx.doi.org/10.1021/ja806689p[Crossref]
  • [37] Sengupta S., Ibele M.E., Sen A., Fantastic voyage: designing self-powered nanorobots, Angew. Chem. Int. Ed., 2012, 51, 8434–8445 http://dx.doi.org/10.1002/anie.201202044[Crossref]
  • [38] Hong Y., Blackman N.M., Kopp N.D., Sen A., Velegol D., Chemotaxis of nonbiological colloidal rods, Phys. Rev. Lett., 2007, 99, 178103 http://dx.doi.org/10.1103/PhysRevLett.99.178103[Crossref]
  • [39] Pavlick R.A., Sengupta S., McFadden T., Zhang H., Sen A., A polymerization-powered motor, Angew. Chem. Int. Ed., 2011, 50, 9374–9377 http://dx.doi.org/10.1002/anie.201103565[Crossref]
  • [40] Reynolds A.M., Maze-solving by chemotaxis, Phys. Rev. E, 2010, 81, 062901 http://dx.doi.org/10.1103/PhysRevE.81.062901[Crossref]
  • [41] Adamatzky A.I., Computation of shortest path in cellular automata, Math. Comput. Model., 1996, 23, 105–113 http://dx.doi.org/10.1016/0895-7177(96)00006-4[Crossref]
  • [42] Fuerstman M.J., Deschatelets P., Kane R., Schwartz A., Kenis P.J.A., Deutch J.M., Whitesides G.M., Solving mazes using microfluidic networks, Langmuir, 2003, 19, 4714–4722 http://dx.doi.org/10.1021/la030054x[Crossref]
  • [43] Steinbock O., Tóth Á., Showalter K., Navigating complex labyrinths - Optimal paths from chemical waves, Science, 1995, 267, 868–871 http://dx.doi.org/10.1126/science.267.5199.868[Crossref]
  • [44] Reyes D.R., Ghanem M.M., Whitesides G.M., Manz A., Glow discharge in microfluidic chips for visible analog computing, Lab. Chip., 2002, 2, 113–116 http://dx.doi.org/10.1039/b200589a[Crossref]
  • [45] Nakagaki T., Yamada H., Tóth Á., Intelligence: Maze-solving by an amoeboid organism, Nature, 2001, 407, 470–470 http://dx.doi.org/10.1038/35035159[Crossref]
  • [46] Lagzi I., Soh S., Wesson P.J., Browne K.P., Grzybowski B.A., Maze solving by chemotactic droplets, J. Am. Chem. Soc., 2010, 132, 1198–1199 http://dx.doi.org/10.1021/ja9076793[Crossref]
  • [47] Szostak J.W., Bartel D.P., Luisi P.L., Synthesizing life, Nature, 2001, 409, 387–390 http://dx.doi.org/10.1038/35053176[Crossref]
  • [48] Yoshida R., Self-oscillating gels driven by the Belousov-Zhabotinsky reaction as novel smart materials, Adv. Mater., 2010, 22, 3463–3483 http://dx.doi.org/10.1002/adma.200904075[Crossref]
  • [49] Gallagher F.A., Kettunen M.I., Day S.E., Hu D.E., Ardenkjaer-Larsen J.H., in’t Zandt R., et. al., Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate, Nature, 2008, 453, 940–943 http://dx.doi.org/10.1038/nature07017[Crossref]
  • [50] Gordon R.T., Hines J.R., Gordon D., Intracellular hyperthermia a biophysical approach to cancer treatment via intracellular temperature and biophysical alterations, Med. Hypotheses, 1979, 5, 83–102 http://dx.doi.org/10.1016/0306-9877(79)90063-X[Crossref]
  • [51] Eastoe J., Sánchez-Dominquez M., Vesperinas A., Paul A., Heenan R.K., Grillo I., Photo-stabilised microemulsions, Chem. Commun., 2005, 2785 [Crossref]
  • [52] Hong Y., Velegol D., Chaturvedic N., Sen A., Biomimetic behavior of synthetic particles: from microscopic randomness to macroscopic control, Phys. Chem. Chem. Phys., 2010, 12, 1423–1435 http://dx.doi.org/10.1039/b917741h[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.