Preferences help
enabled [disable] Abstract
Number of results
2013 | 8 | 1 | 132-139
Article title

Involvement of oxidative stress in liver injury after subchronic intoxication with low doses of chlorpyrifos - study on rats

Title variants
Languages of publication
Organophosphate compounds are nowadays the most frequently used pesticides. For these insecticides, the primary target is acetylcholinesterase and for this reason the main clinical effect of acute intoxication with organophosphate insecticides involves an irreversible inhibition of the activity of this enzyme. However, in the chronic or subchronic exposition oxidative stress has been reported as the main mechanism of its toxicity. The present study investigated the effect of three low doses (0.2, 2, 5 mg/kg bw) of chlorpyrifos for 14 or 28 days on serum liver enzymes and on oxidative stress parameters in the liver of rats. Chlorpyrifos treatment resulted in aminotransferases and alkaline phosphatase increase after 14 days (higher doses) and 28 days (all doses) treatment together with changes of antioxidative enzymes activities and reduced glutathione and malonyldialdehyde level in the liver. The enhancement of lipid peroxidation is temporary, reaching a peak after 14 days and decreasing after 28 days of treatment. Based on the experimental findings of this study the temporary liver injury caused by oxidative stress has been shown. The disturbances in the liver antioxidative status and increased liver membrane permeability may appear in case of doses near to the accepted human daily intake.
Physical description
1 - 2 - 2013
8 - 12 - 2012
  • Department of Toxicology, Medical University in Bialystok, 15-222, Bialystok, 2 c Mickiewicza st., Poland
  • [1] Lukaszewicz-Hussain A. Role of oxidative stress in organophosphates insecticide toxicity - short review, Pest. Biochem. Physiol., 2010, 98, 45–150[Crossref][WoS]
  • [2] Rezg R., Mornagui B., El-Fazaa S., Garbi N. Organophosphorus pesticides as food chain contaminants and type 2 diabetes: a review, Trends Food Sci. Technol., 2010, 21, 345–357[WoS][Crossref]
  • [3] Curl C.L., Fenske R.A., Kissel J.C., Shirai J.H., Moate T.F., Griffith W., Coronado G., Thompson B. Evaluation of take-home organophosphorus pesticide exposure among agricultural workers and their children, Environ. Health Perspect., 2002, 110, A787–792[Crossref]
  • [4] Lotti M. Clinical toxicology of anticholinesterase agents in humans. In: Krieger R.I., Doull J., editors. Handbook of pesticide toxicology, Volume 2. Agents. San Diego, USA, Academic Press, USA, 2001, 1043–1085[Crossref]
  • [5] Savolainen K. Understanding the toxic action of organophosphates. In: Krieger R.I., Doull J., editors. Handbook of pesticide toxicology, Volume 2. Agents. San Diego, USA, Academic Press, USA, 2001, Handbook of Pesticide Toxicology, II Ed, Academic Press, USA, 2001, 1013–1043
  • [6] Yurumez Y., Cemek M., Yavuz Y., Birdane Y.O. Beneficial effect of N-acetylcysteine against organophosphate toxicity in mice, Biol. Pharmacol. Bull., 2007, 30, 490–494[Crossref]
  • [7] Possamai F.P., Fortunato J.J., Feier G., Agostinho F.R., Quevedo J., Filho D.W., Dal-Pizzol F. Oxidative stress after acute and sub-chronic malathion intoxication in Wistar rats, Environ. Toxicol. Pharmacol., 2007, 23, 198–204[Crossref][WoS]
  • [8] Lukaszewicz-Hussain A., Moniuszko-Jakoniuk J. Activities of superoxide dismutase and catalase in erythrocytes and concentration of malondialdehyde in serum of rats intoxicated with chlorfenvinphos in low doses, Pol. J. Environ. Stud., 1999, 8, 234–236
  • [9] Lukaszewicz-Hussain A., Moniuszko-Jakoniuk J., Rogalska J. Assessment of lipid peroxidation in rat tissues in subacute chlorfenvinphos administration, Pol. J. Environ. Stud. 2007, 16, 233–236
  • [10] Lukaszewicz-Hussain A. Subchronic intoxication with chlorfenvinphos, an organophosphate insecticide, affects rat brain antioxidative enzymes and glutathione level, Food Chem. Toxicol., 2008, 46, 82–86[WoS][Crossref]
  • [11] Mates J.M., Perez-Gomez C., Nunez De Castro I. Antioxidant enzymes and human diseases, Clin. Biochem., 1999, 32, 595–603[Crossref]
  • [12] Morgan M.J., Kim Y.S., Liu Z. Lipids rafts and oxidative stress-induced cell death, Antiox. Redox Sign., 2007, 9, 1–13[Crossref]
  • [13] Gerard-Monnier D., Chaudiere J. Metabolism and antioxidant function of glutathione, Pathol. Biol. (Paris), 1996, 44, E209–E214
  • [14] Spolarics Z., Wu J.X. Role of glutathione and catalase in H2O2 detoxification in LPS-activated hepatic endothelial and Kupffer cells, Am. J. Physiol., 1997, 273, G1304–G1311
  • [15] Lukaszewicz-Hussain A. Activities of brain antioxidant enzymes, lipid and protein peroxidation, Central Eur. J. Med., 2011, 6, 588–594[Crossref]
  • [16] Ajiboye T.O. Redox status of the liver and kidney of 2,2-dichlorovinyl dimethyl phosphate (DDVP) treated rats, Chem. Biol. Interact., 2010, 185, 202–207[WoS]
  • [17] Rej R. Aspartate aminotransferase activity and isoenzyme proportions in human liver tissues, Clin. Chem., 1978, 24, 1971–1979
  • [18] Sturgill M.G., Lambert G.H. Xenobiotic-induced hepatotoxicity: mechanisms of liver injury and methods of monitoring hepatic function, Clin. Chem., 1997, 43, 1512–1526
  • [19] Yaman H., Isbilir S., Cakir E., Uysal B. Current issues with paracetamol induced toxicity, J. Exp. Integrat. Med., 2011, 1, 165–166[Crossref]
  • [20] Toxicological profile for chlorpyrifos, U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, 1997
  • [21] Tomlin C.D.S., The Pesticide Manual, A World Compendium, 14th ed.; British Crop Protection Council: Alton, Hampshire, UK, 2006, 186–187
  • [22] Sahin E., Gümüşlü S. Immobilization stress in rat tissues: alteractions in protein oxidation, lipid peroxidation and antioxidant defense system, Comp. Biochem. Physiol. C. Toxicol. Pharmacol., 2007, 144, 342–347[Crossref]
  • [23] Aebi H.E. Catalase in vitro, Methods Enzymol., 1984, 105, 121–126[Crossref]
  • [24] Lowry O.H., Rosenbrough M.J., Farr A.L., Randall R. Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, 193, 265–275
  • [25] FAO Specifications and evaluations for agricultural pesticides. Chlorpyrifos, Food and agriculture organization of the United Nations, 2006
  • [26] Sharma Y., Bashir S., Irshad M., Gupta S.D., Dogra T.D. Effects of acute dimethoate administration on antioxidant status of liver and brain of experimental rats, Toxicology, 2005, 206, 49–57[Crossref]
  • [27] Fortunato J.J., Agostinho F.R., Reus G.Z., Petronilho F.C., Dal-Pizzol F., Quevedo J. Lipid peroxidative damage on malathion exposure in rats, Neurotox. Res., 2006, 9, 23–28[Crossref]
  • [28] Ranjbar A., Solhi H., Mashayekhi F.J., Susanabdi A., Rezaiec A., Abdollahi M. Oxidative stress in acute human poisoning with organophosphorus insecticides; a case control study, Environ. Toxicol. Pharmacol., 2005, 20, 88–91[Crossref]
  • [29] Lee T.H., Kim W.R., Benson J.T., Therneau T.M., Melton L.J. Serum aminotransferase activity and mortality risk in a United States community, Hepatology, 2008, 47, 880–887[Crossref][WoS]
  • [30] Reichling J.J., Kaplan M.M. Clinical use of serum enzymes in liver disease, Dig. Dis. Sci., 1988, 33, 1601–1614[Crossref]
  • [31] Akhgari M., Abdollahi M., Kebryaeezadeh A., Hosseini R., Sabzevari O. Biochemical evidence for free radical-induced lipid peroxidation as a mechanism for subchronic toxicity of malathion in blood and liver of rats, Hum. Exp. Toxicol., 2003, 22, 205–208[Crossref]
  • [32] Rao J.V. Toxic effects of novel organophosphorus insecticide (RPR-V) on certain biochemical parameters of euryhaline fish, Oreochromis mossambicus, Pest. Biochem. Physiol., 2006, 86, 78–84[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.