Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2013 | 8 | 2 | 157-165

Article title

Automatic diagnosis of primary headaches by machine learning methods


Title variants

Languages of publication



Primary headaches are common disease of the modern society and it has high negative impact on the productivity and the life quality of the affected person. Unfortunately, the precise diagnosis of the headache type is hard and usually imprecise, thus methods of headache diagnosis are still the focus of intense research. The paper introduces the problem of the primary headache diagnosis and presents its current taxonomy. The considered problem is simplified into the three class classification task which is solved using advanced machine learning techniques. Experiments, carried out on the large dataset collected by authors, confirmed that computer decision support systems can achieve high recognition accuracy and therefore be a useful tool in an everyday physician practice. This is the starting point for the future research on automation of the primary headache diagnosis.










Physical description


1 - 4 - 2013
23 - 1 - 2013


  • Department of Systems and Computer Networks, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
  • Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000, Novi Sad, Serbia
  • Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 1-9, 21000, Novi Sad, Serbia
  • Department of Systems and Computer Networks, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland


  • [1] Pop P.H.M., Gierveld C.M., Karis H.A.M., Tiedink H.G.M., Epidemiological aspects of headache in a workplace setting and the impact on the economic loss. EFNS European Journal of Neurology 2002; 9:171–174 http://dx.doi.org/10.1046/j.1468-1331.2002.00355.x[Crossref]
  • [2] Lipton R.B., Stewart W.F., Diamond S., Diamond M.L., Reed M.L., Prevalence and burden of migraine in the United States: Data from the American Migraine Study II. Headache 2001; 41:646–657 http://dx.doi.org/10.1046/j.1526-4610.2001.041007646.x[Crossref]
  • [3] Simić S., Simić D., Cvijanović M., Clinical and socio-demographic characteristics of tension type headache in working population, HealthMED 2012; 6(4): 1341–1347
  • [4] Devenport R., Acute headache in the emergency department. J Neurol Neurosurg Pshychiatry 2002; 72:33–37
  • [5] Kececi H., Dener S., Epidemiological and Clinical Characteristics of Migraine in Sivas, Turkey. Headache 2002; 42:275–280 http://dx.doi.org/10.1046/j.1526-4610.2002.02080.x[Crossref]
  • [6] Hagen K., Zwart J-A., Vatten L., Stovner L.J., Bovin G., Prevalence of migraine and non-migrainous headache - head-HUNT, a large population-based study. Cephalalgia 2000; 20: 900–906 http://dx.doi.org/10.1046/j.1468-2982.2000.00145.x[Crossref]
  • [7] Olesan J., Lipton R.B., Headache classification update 2004. Current Opinion in Neurology 2004; 17:257–282 http://dx.doi.org/10.1097/00019052-200406000-00004
  • [8] Headache Classification Subcommittee of the International Headache Society, The International Classification of Headache Disorders. Second Edition. Cephalalgia 2004; 24(Suppl. 1):1–160 [WoS]
  • [9] Lipton R.B., Bigal M.E., Steiner T.J., Silberstein S.D., Olesen J., Classification of primary headaches. Neurology 2004; 63:427–435 http://dx.doi.org/10.1212/01.WNL.0000133301.66364.9B[Crossref]
  • [10] MacGregor E.A., Menstruation, sex hormones, and migraine. Neurol Clin 1997; 15:125–141 http://dx.doi.org/10.1016/S0733-8619(05)70299-1[Crossref]
  • [11] Simić S., Simić D., Relationship between sociodemographic characteristics and migraine in working women. HealthMED 2010; 4(1):21–28
  • [12] Kaniecki R.G., Migraine and tension-type headache. Neurology 2002; 58(Suppl 6):S15–S20 http://dx.doi.org/10.1212/WNL.58.9_suppl_6.S15[Crossref]
  • [13] Mathew N.T., Tension type headache. Curr Neurol Neurosci Rep 2006; 6(2):100–105 http://dx.doi.org/10.1007/s11910-996-0031-x[WoS][Crossref]
  • [14] Cano Garcia F.J., Rodriguez Franco L., The validity of the International Headache Society criteria and the modifications put forward in 2002 in the diagnosis of migraine and tension type headaches. Rev Neurol. 2003; 16–30; 36(8): 710–714
  • [15] Jensen R., Olesen J., Diener H.C., Tension-type headache. In: Brandt T., Caplan L.R., Dichgans J., Diener H.C., Kennard C. (eds). Neurological Disorders - Course and Treatment. Second edition, Amsterdam, Academic Press, 2003, 23–30 http://dx.doi.org/10.1016/B978-012125831-3/50198-2[Crossref]
  • [16] Schwartz B.S., Stewart W.F., Simon D., Lipton R.B., Epidemiology of tension-type headache. JAMA 1998; 279:381–383 http://dx.doi.org/10.1001/jama.279.5.381[Crossref]
  • [17] Burduk R., Wozniak M., Different Decision Tree Induction Strategies for a Medical Decision Problem, Central European Journal of Medicine, 2012, Volume 7, Number 2, 183–193 http://dx.doi.org/10.2478/s11536-011-0142-x[Crossref][WoS]
  • [18] Wozniak M., Two-Stage Classifier for Diagnosis of Hypertension Type, Lecture Notes in Bioinformatics, vol. 4345, Springer-Verlag, Berlin Heidelberg New York, 2006, s. 433–440
  • [19] Krawczyk B., Pattern recognition approach to classifying cyp 2c19 isoform, Central European Journal of Medicine, 2012, vol. 7, no. 1, pp. 38–44 http://dx.doi.org/10.2478/s11536-011-0120-3[Crossref][WoS]
  • [20] Krawczyk B., Classifier committee based on feature selection method for obstructive nephropathy diagnosis, in Semantic Methods for Knowledge Management and Communication, ser. Studies in Computational Intelligence, vol. 381, 2011, pp. 115–125 http://dx.doi.org/10.1007/978-3-642-23418-7_11[Crossref]
  • [21] Duda R.O., Hart P.E. Stork D.G., Pattern Classification, Wiley-Interscience 2001
  • [22] Quinlan JR. Induction of decision trees. Mach Learning, 1986, 1(1):81–106
  • [23] Vapnik V., Statistical Learning Theory, Willey 1998
  • [24] Breiman L. Bagging predictors. Mach Learning 1996;24(2):123–40
  • [25] Freund, Y., Schapire, R. Experiments with a new boosting algorithm. In Proceedings of the Thirteenth International Conference on Machine Learning (ICML) 1996, 148–156
  • [26] Breiman L. Random forests. Mach Learning 2001;45(1):5–32 http://dx.doi.org/10.1023/A:1010933404324[Crossref]
  • [27] Arauzo-Azofra, A., Benitez, J. M. and Castro, J. L. Consistency measures for feature selection. J. Intell. Inf. Syst. 30, 3, 2008, 273–292
  • [28] Kenji Kira, Larry A. Rendell: A Practical Approach to Feature Selection. In: Ninth International Workshop on Machine Learning, 1992, 249–256
  • [29] Guyon I., Gunn S., Nikravesh M. and Zadeh L., Feature extraction, foundations and applications, Springer, 2006
  • [30] webpage of R project: http://www.r-project.org/
  • [31] Burduk R., Classification error in Bayes multistage recognition task with fuzzy observations. Pattern Anal. Appl. 13(1): 85–91, 2010 http://dx.doi.org/10.1007/s10044-008-0143-9[WoS][Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.