Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2012 | 7 | 5 | 635-641

Article title

Selected risk factors of fractures in children - own observation


Title variants

Languages of publication



Bone fractures may depend on Vitamin D Receptor Gene (VDR), bone mineral density, bone turnover markers. Patients and methods. 161 patients were recruited and underwent: skeletal densitometry (DXA) method and bone turnover studies (Osteocalcin and Ntx).The study group was evaluated using restriction enzyme digestion at BsmI (rs1544410), FokI (rs2228570), ApaI (rs7975232) and TaqI (rs731236), polymorphic sites of the VDR gene. Multivariate logistic regression was used to assess factor significance. The model included variables with sex- and age-standardized parameters, VDR genotypes, and bone metabolism marker levels. Results. Factors associated with fractures were: osteocalcin concentration and Z-score BMDt. Odds Ratio (OR) values equaled: 1.01 (95%Confidence Interval (95%CI) 1.00–1.02) for osteocalcin (p=0.006), and 0.66 (95%CI 0.42-1.03; p=0.07) for Z-score BMDt. In patients with reduced bone mass, factors related to fractures were: osteocalcin (0.04) and carriage of BsmI b (0.07) or ApaI a alleles (0.08). ORs were 1.01 (95%CI 1.00–1.02) for OC, 0.29 (95%CI 0.07–1.14) for BsmI, and 2.13 (95%CI 0.91–4.99) for ApaI polymorphic allele carriage. Conclusions. Carriage of BsmI b allele reduces, while carriage of ApaI a allele and heightened osteoclacin level increase the risk of fractures in study children with reduced bone mass. VDR polymorphism, bone mineral density and bone formation’s marker - osteocalcin maybe considered as risk factor for fracure in children from Lodz region.










Physical description


1 - 10 - 2012
28 - 7 - 2012


  • Department of Paediatric Propedeutics and Bone Metabolism Diseases, Medical University of Lodz, 36/50 Sporna St, 91-738, Lodz, Poland
  • Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, 36/50 Sporna St, 91-738, Lodz, Poland
  • Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, 36/50 Sporna St, 91-738, Lodz, Poland
  • Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, 36/50 Sporna St, 91-738, Lodz, Poland
  • Department of Paediatric Propedeutics and Bone Metabolism Diseases, Medical University of Lodz, 36/50 Sporna St, 91-738, Lodz, Poland


  • [1] Clark E.M., Ness A.R., Bishop N.J., Tobias J.H. Association between bone mass and fractures in children: a prospective cohort study, J Bone Miner Res, 2006, 21, 1489–1495 http://dx.doi.org/10.1359/jbmr.060601[Crossref]
  • [2] Konstantynowicz J., Białokoz-Kalinowska I., Motkowski R., Abramowicz P., Piotrowska-Jastrzębska J., Sienkiewicz J., Seeman E. The characteristic of fractures in Polish adolescents aged 16–20 years, Ost Int, 2005, 16, 1397–1403 http://dx.doi.org/10.1007/s00198-005-1850-3[Crossref]
  • [3] Ferrari S.L., Chevalley T., Bonjour J.P., Rizzoli R. Childhood fractures are associated with decreased bone mass gain during puberty: an early marker of persistent bone fragility? J Bone Miner Res, 2006, 21, 501–507 http://dx.doi.org/10.1359/jbmr.051215[Crossref]
  • [4] Michałus I., Chlebna-Sokół D., Rusińska A., Jakubowska-Pietkiewicz E., Kulińska-Szukalska K. Ocena gęstości mineralnej i metabolizmu kostnego u dzieci z wielokrotnymi złamaniami kości, Ortopedia Rehabilitacja Traumatologia, 2008, 10, 602–612 (in Polish)
  • [5] Manias K., McCabe D., Bishop N. Fractures and recurrent fractures in children; varying effects of environmental factors as well as bone size and mass, Bone, 2006, 39, 652–657 http://dx.doi.org/10.1016/j.bone.2006.03.018[Crossref]
  • [6] Kopiar B., Wickizer T.M. Fracture among children: incidence and impact on daily activities, Injury Prevention 1998, 4, 194–197 http://dx.doi.org/10.1136/ip.4.3.194[Crossref]
  • [7] Richards J.B., Kavvoura F.K., Rivadeneira F., Styrkarsdottir U., Estrada K., Halldórsson B.V., et al. Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture, Ann Intern Med., 2009, 151, 528–537 [Crossref]
  • [8] Baim S., Leonard M.B., Bianchi M.L., Hans D.B., Kalkwarf H.J., Langman C.B., et al. Official Positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD Pediatric Position Development Conference. J Clin Densitom, 2008, 11, 6–21 http://dx.doi.org/10.1016/j.jocd.2007.12.002[Crossref][WoS]
  • [9] Bianchi M.L. How to menage osteoporosis in children. Best Pract Res Clin Rheumatol, 2005, 19, 991–1005 http://dx.doi.org/10.1016/j.berh.2005.06.006[Crossref]
  • [10] Bollen A.M., Eyre D.R. Bone resorption rate in children monitored by urinary assay of collagen type i cross-linked peptides, Bone 1994, 15, 31–33 http://dx.doi.org/10.1016/8756-3282(94)90888-5[Crossref]
  • [11] Ambroszkiewicz J., Gajewska J., Laskowska-Klita T. Serum osteocalcin and bone alkaline phosphatase in healthy children in relation to age and gender, Med Wieku Rozwoj 2002, 6, 257–265 (in Polish)
  • [12] Cooper C., Dennison E.M., Leufkens H.G., Bishop N., Van Staa T.P. Epidemiology of childhood fracures in Britan: A study using the general practice research database. JBMR 2004, 19(12), 1976–1982 http://dx.doi.org/10.1359/jbmr.040902[Crossref]
  • [13] Key L.L. Jr, Reis W., Madyastha P., Reed F. Juvenile osteoporosis: recognizing the risk, J Pediatr Endocrinol Metab. 2003, 16 suppl 3, 683–686
  • [14] Sierra Salinas C., Delange Segura E., Blasco Alonso J., Navas Lopez V.M., Barco Galves A. Low bone mineral density and the other risk factors in prepubertal children with fracture of the distal forearm, An Pediatr (Barc), 2009, 7, 383–390 http://dx.doi.org/10.1016/j.anpedi.2009.07.007[Crossref]
  • [15] Goulding A., Jones I.E., Taylor R.W., Manning P.J., Williams S.M. More broken bones: A 4-years double cohort study of young girls with and without distal forearm fractures, JBMR, 2000, 15, 2011–2019 http://dx.doi.org/10.1359/jbmr.2000.15.10.2011[Crossref]
  • [16] Pye S.R., Tobias J., Silman A.J., Reeve J., O’Neill T.W., EPOS Study Group. Chidhood fractures do not predict future fractures: results from the European Prospective Osteoporosis Study, J Bone Miner Res. 2009, 24, 1314–1318 http://dx.doi.org/10.1359/jbmr.090220[Crossref]
  • [17] Chlebna-Sokół D., Błaszczyk A., Loba-Jakubowska E., Michałus I., Kulińska K. Czy wielokrotne złamania kośĆca w wieku rozwojowym mogą świadczyć o zaburzeniach metabolizmu kostnego? Postępy Osteoartrologii, 2003, 4, 61–64 (in Polish)
  • [18] Gerdhem P., Ivaska K.K., Alato S.L., Halleen J.M., Hellman J., Isaksson A., et al. Biochemical markers of bone metabolism and prediction of fracture in elredy women, JBMR, 2004, 19, 886–893
  • [19] Ivaska K.K., Gerdhem P., Vaananen H.K., Akesson K., Obrant K.J. Bone turnover markers and perdection of fracture: A prospecive follow-up study of 1040 elredy women for mean of nine years, J Bone Miner Res, 2009, 6 [Epub ahead of print] [WoS]
  • [20] Baroncelli G.I., Federico G., Bertolloni S., Ceccarelli C., Cupelli D., Saggese G. Vitamin D-receptor genotype does not predict bone mineral density, bone turnover, and growth in prepubertal children, Horm Res, 1995, 51, 150–156 http://dx.doi.org/10.1159/000023348[Crossref]
  • [21] Tao C., Yu T., Garnett S., Briody J., Knight J., Woodhead H., Cowell C.T. Vitamin D receptor alleles predict growth and bone density in girls, Arch Dis Child, 1998, 79, 488–494 http://dx.doi.org/10.1136/adc.79.6.488[Crossref]
  • [22] Styrkasdottir U., Halldorsson B.V., Gretarsdottir S., Gudbjarstsson D.F., Walters G.B., Ingvarsson T. et al. Multiple genetic loci for bone mineral density and fractures. N Engl J Med, 2008, 358(22), 2355–2365 http://dx.doi.org/10.1056/NEJMoa0801197[Crossref][WoS]
  • [23] Abrams S.A., Griffin I.J., Hawthorne K.M., Chen Z., Gunn S.K., Wilde M., et al. Vitamin D receptor Fok I polymorphisms affect calcium absorption, kinetics, and bone mineralization rates during puberty, J Bone Miner Res, 2005, 20, 945–953 http://dx.doi.org/10.1359/JBMR.050114[Crossref]
  • [24] Uitterlinden A.G., Ralston S.H., Brandi M.L., Carey A.H., Grinberg D., Langhahi B.L., et al. The association between common vitamin D receptor gene variations and osteoporosisi: a participant - level meta-analysis, Ann Intern Med, 2006, 145, 255–264 [Crossref]
  • [25] Cusack S., Melgaard C., Michaeles K.F., Jakobsen J., Lamberg-Allardt C.J., Cashman K.D. Vitamin D and estrogen receptor alpha genotype and indices of bone mass and bone turnover in Danish girls, J Bone Miner Metab, 2006, 24, 329–336 http://dx.doi.org/10.1007/s00774-006-0691-2[Crossref]
  • [26] Zhang C., Wang C., Liang J., Zhou X., Fan Y., Shi Q. The vitamin D receptor Fok 1 polymorphism and bone mineral density in Chinese children, Clin Chim Acta, 2008, 395, 111–114 http://dx.doi.org/10.1016/j.cca.2008.05.019[WoS]
  • [27] Van der Sluis I.M., de Muinck Keizer-Schrama S.M., Krenning E.P., Pols H.A., Uiterlinden A.G. Vitamin D receptor gene polymorphism predicts height and bone size rather than bone density in children and young adults,. Calcif Tissue Int, 2003, 73, 332–338 http://dx.doi.org/10.1007/s00223-002-2130-2[Crossref]
  • [28] Ferrari S., Rizzoli R., Manen D., Slosman D., Bonjour J.P. Vitamin D receptor gene start codon polymorphisms (Fok I) and bone mineral density: interaction with age, dietary calcium, and 3′-end region polymorphisms, J Bone Miner Res 1998, 13, 925–930 http://dx.doi.org/10.1359/jbmr.1998.13.6.925
  • [29] Horst-Sikorska W., Wawrzyniak A., Celczyńska-Bajew L., Marcinkowska M., Dąbrowski S., Kalak R., Słomki R. Polymorphism of VDR gene-the most effective molecular marker of osteoporotic bone fractures risk within postmenopausal women from Wielkopolska region of Poland, Polish J of Endocrinol, 2005, 56, 233–239 (in Polish)

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.