Preferences help
enabled [disable] Abstract
Number of results
2012 | 7 | 5 | 672-679
Article title

ANN as a prognostic tool after treatment of non-seminoma testicular cancer

Title variants
Languages of publication
Testicular cancer is rare but is the most common cancer in males between 15 and 34 years of age. Two principal types of testicular cancer are distinguished: seminomas and non-seminomas. If detected early, the overall cure rate for testicular cancer exceeds 90%. In this study, artificial neural network (ANN) analysis as a prognostic tool was demonstrated regard to five year recurrence after the non-seminoma treatment. Data from 202 patients treated for non-seminoma were available for evaluation and comparison. A total of 32 variables were analysed using the ANN. The ANN approach, as an advanced multivariate data processing method, was demon-strated to provide objective prognostic data. Some of these prognostic factors are consistent or even imperceptible with previously evaluated by other statistical methods.
Physical description
1 - 10 - 2012
28 - 7 - 2012
  • Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, ul. Jurasza 2, 85-094, Bydgoszcz, Poland
  • Department of Marketing and Pharmaceutical Law, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, ul. Jurasza 2, 85-094, Bydgoszcz, Poland
  • Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, ul. Jurasza 2, 85-094, Bydgoszcz, Poland
  • The WCO Greater Poland Cancer Centre, ul. Garbary 15, 61-688, Poznan, Poland
  • Gynaecology, Obstetrics and Gynaecological Oncology Ward, Provincial Specialist Hospital in Olsztyn, ul. Żołnierska 18, 10-561, Olsztyn, Poland
  • Gynaecology, Obstetrics and Gynaecological Oncology Ward, Provincial Specialist Hospital in Olsztyn, ul. Żołnierska 18, 10-561, Olsztyn, Poland
  • NZOZ Pantamed Sp z o.o. in Olsztyn, ul. Pana Tadeusza 6, 10-461, Olsztyn, Poland
  • Department of Biopharmacy, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, ul. Jurasza 2, 85-094, Bydgoszcz, Poland
  • [1] Masters J.R.W., Köberle B., Curing metastatic cancer: lessons from testicular germ-cell tumors, Nat. Rev. Cancer, 2003, 3, 517–525[Crossref]
  • [2] Hameed A., White B., Chinegwundoh F., Thwaini A., Pahuja A., A review in management of testicular cancer: single center review, World Journal of Oncology, 2011, 2, 94–101[Crossref]
  • [3] Schmelz H.U., Port M., Hauck E.W., Schwerer M.J., Weidner W., Sparwasser Ch., Abend M., Apoptosis: a key effector mechanism of lymphocyte action in human nonseminomatous testicular carcinoma? BJU International, 2005, 96, 158–163[Crossref]
  • [4] Aschim E.L, Haugen T.B., Tretli S., Daltveit A.K., Grotmol T. Risk factors for testicular cancer - differences between pure non-seminoma and mixed seminoma/non-seminoma?, INT. J. ANDROL., 2006, 29, 458–467[Crossref]
  • [5] Robertson A.G., Read G., The value of lactate dehydrogenase as a nonspecific tumour marker for seminoma of the testis, Br. J. Cancer, 1982, 46, 994[Crossref]
  • [6] Testis. In: Edge S.B., Byrd D.R., Compton C.C., et al., eds.: AJCC Cancer Staging Manual. 7th ed. New York, NY: Springer, 2010, 469–478
  • [7] Daugaard G., Petersen P.M., Rorth M., Surveillance in stage I testicular cancer, APMIS, 2003, 111, 76–85[Crossref]
  • [8] Fossa S.D., Chen J., Schonfeld S.J., McGlynn K.A., McMaster M.L., Gail M.H., Travis L.B., Risk of contralateral testicular cancer: a population based study of 29515 U.S. men, J. Natl. Caner. Inst., 2005 97, 1056–1066[Crossref]
  • [9] Bray F., Ferlay Devesa S.S., McGlynn K.A., øller H., Interpreting the international trends in testicular seminoma and nonseminoma incidence, Nat. Clin. Pract. Urol., 2006, 3, 532–543[Crossref]
  • [10] Bradburn M.J., Clark T.G., Love S.B., Altman D.G., Survival analysis part II: Multivariate data analysis - an introduction to concepts and methods, Br. J. Cancer., 2003, 89, 431–436[Crossref]
  • [11] Niederberger C.S., Commentary on the use of neuronal networks in clinical urology, J. Urol., 1995, 153, 1362[Crossref]
  • [12] Cai T., Conti G., Lorenzini M., Bartoletti R., Artificial intelligences in urological practice: the key to success?, Ann. Oncol., 2007, 18, 604–605[Crossref][WoS]
  • [13] Abbod M.F., Catto J.W.F., Linkens D.A., Hamdy F.C., Application of artificial intelligence to the management of urological cancer, J. Urol., 2007, 178, 1150–1156[Crossref]
  • [14] Schwarzer G., Schumacher M., Artificial neural networks for diagnosis and prognosis in prostate cancer, Semin. Urol. Oncol., 2002, 20, 89–95[Crossref]
  • [15] Schwarzer G., Vach W., Schumacher M., On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology, Stat. Med., 2002, 19, 541–561<541::AID-SIM355>3.0.CO;2-V[Crossref]
  • [16] Clark T.G., Bradburn M.J., Love S.B., Altman D.G., Survival analysis part IV: Further concepts and methods in survival analysis, Br. J. Cancer, 2003, 89, 781–786[Crossref]
  • [17] Sargent D.J., Comparison of artificial neural networks with other statistical approaches: results from medical data sets, Cancer, 2001, 91, 1636–1642<1636::AID-CNCR1176>3.0.CO;2-D[Crossref]
  • [18] Bączek T., Buciński A., Ivanov A.R., Kaliszan R., Artificial neural network analysis for evaluation of peptide MS/MS spectra in proteomics, Anal. Chem., 2004, 76, 1726–1732[Crossref]
  • [19] Buciński A., Markuszewski M.J., Wiktorowicz W., Krysiński J., Kaliszan R., Artificial neural networks for prediction of antibacterial activity in series of imidazole derivatives, Comb. Chem. High Throughpu. Screen, 2004, 7, 327–336
  • [20] Buciński A., Nasal A., Kaliszan R., Pharmacological classification of drugs based on neural network processing of molecular modeling data, Comb. Chem. High Throughput Screen, 2000, 3, 525–533
  • [21] Moul J.W., Snow P.B., Fernandez B., Maher P.D., Sesterhenn I.A., Neural Network Analysis of quantitative histological factors to predict pathological stage in clinical stage I nonseminomatous testicular cancer, J. Urol., 1995, 153, 1674–1677[Crossref]
  • [22] Samili M.M., Dogan I., An artificial neural network for predicting the presence of spermatozoa in the testes of men with nonobstructive azoospermia, J. Urol., 2004, 171, 2354–2357[Crossref]
  • [23] Snow P.B., Rodvold D.M., Brandt J.M., Artificial neural networks in clinical urology, Urology, 1999, 54, 787–790[Crossref]
  • [24] Wei T.J., Tewari A., Artificial neural networks in urology: PRO, Urology, 1995, 54, 945–948[Crossref]
  • [25] Djavan B., Remzi M., Zlotta A., Seitz C., Snow P., Marberger M., Novel artificial neural network for early detection of prostate cancer, J. Clin. Oncol., 2002, 20, 921–929[Crossref]
  • [26] Snow P.B., Smith D.S., Catalona W.J., Artificial neural networks in the diagnosis and prognosis of prostate cancer: a pilot study, J. Urol., 1994, 152, 1923–1926
  • [27] Tawari A. Narayan, P., Novel staging tool for localized prostate cancer: a pilot study using genetic neural network, J. Urol., 1998, 160, 443–444[Crossref]
  • [28] Feleppa E.J., Ennis R.D., Schiff P.B., Wuu C.S., Kalisz A., Ketterling J., Urban S., Liu T., Fair W.R., Porter C.R., Gillespie J.R., Ultrasonic spectrum-analysis and neural-network classification as a basis for ultrasonic imaging to target brachytherapy of prostate cancer, Brachytherapy, 2002, 1, 48–53.[Crossref]
  • [29] Prater J.S., Richard W.D. Segmenting ultrasound images of the prostate using neural networks, Ultrason. Imag.,1992, 4, 159–185[Crossref]
  • [30] Han M., Snow P.B., Brandt J.M., Partin A.W., Evaluation of artificial neural networks for the prediction of pathologic stage in prostate carcinoma, Cancer, 2001, 91, 1661–1666<1661::AID-CNCR1180>3.0.CO;2-5[Crossref]
  • [31] Khan J., Wei J.S., Ringner M., Saal L.H., Ladanyi M., Wastermann F., Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med., 2001, 7, 673–679[Crossref]
  • [32] Wells D.M., Niederer, J., A medical expert system approach using artificial neural networks for standardized treatment planning, Int. J. Radiat. Oncol. Biol. Phys., 1998, 41, 173–182[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.