PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2012 | 7 | 4 | 545-552
Article title

Regulation of gene expression in articular cells is influenced by biomechanical loading

Content
Title variants
Languages of publication
EN
Abstracts
EN
Publisher

Journal
Year
Volume
7
Issue
4
Pages
545-552
Physical description
Dates
published
1 - 8 - 2012
online
24 - 5 - 2012
Contributors
  • Department of Orthopaedic Surgery, University of Regensburg, 93077, Bad Abbach, Germany
  • Clinical Research Unit 208, Center of Dento-Maxillo-Facial Medicine, University of Bonn, 53111, Bonn, Germany
  • Department of Orthopaedic Surgery, University of Aachen, 52074, Aachen, Germany
  • Department of Orthopaedic Surgery, University of Aachen, 52074, Aachen, Germany
  • Department of Orthopaedic Surgery, University of Regensburg, 93077, Bad Abbach, Germany
References
  • [1] Kitay G. S., Koren M.J., Helfet D.L., Parides M.K., Markenson J.A., Efficacy of combined local mechanical vibrations, continuous passive motion and thermotherapy in the management of osteoarthrtitis of the knee. Osteoarthritis Cartilage, 2009, 17, 1269–1274 http://dx.doi.org/10.1016/j.joca.2009.04.015[WoS][Crossref]
  • [2] Deschner J., Wypasek E., Ferretti M., Rath B., Anghelina., Agarwal S., Regulation of RANKL by biomechnical loading in fibrochondrocytes of meniscus. J. Biomech., 2006, 39, 1796–1803 http://dx.doi.org/10.1016/j.jbiomech.2005.05.034[Crossref]
  • [3] Smith R. L., Carter D.R., Schurmann D.J., Pressure and shear differentially alter human articular chondrocyte metabolism: a review. Clin. Orthop., 2004, 427(Suppl), 89–95
  • [4] Roelofsen J., Klein-Nulend J., Burger E.H., Mechanical stimulation by intermittent hydrostatic compression promotes bone-specific gene expression in vitro. J. Biomech., 1995, 28, 1493–1503 http://dx.doi.org/10.1016/0021-9290(95)00097-6[Crossref]
  • [5] Kanazawa T., Furumatsu T., Hachioji M., Oohashi T., Ninomiya Y., Ozaki T., Mechanical stretch enhances COL2A1 expression on chromatin by inducing SOX9 nuclear translocalization in inner meniscus cells. J. Orthop. Res., 2011, Aug 18, doi: 10.1002/jor.21528 [Crossref][WoS]
  • [6] Huang J., Ballou L.R., Hasty K.A., Cyclic equibiaxial tensile strain induces both anabolic and catabolic responses in articular chondrocytes. Gene, 2007, 404, 101–119 http://dx.doi.org/10.1016/j.gene.2007.09.007[Crossref][WoS]
  • [7] Mitsui N., Suzuki N., Maeno M., Yanagisawa M., Koyama Y., Otsuka K., Shimizu N., Optimal compressive force induces bone formation via increasing bone morphogenetic proteins production and decreasing their antagonists production by Saos-2 cells. Life Sciences, 2006, 78, 2697–2706 http://dx.doi.org/10.1016/j.lfs.2005.10.024[Crossref]
  • [8] Rath B., Nam J., Knobloch T.J., Lannutti J.J., Agarwal S., Compressive forces induce osteogenic gene expression in calvarial osteoblasts. J. Biomech., 2008, 41, 1095–1103 http://dx.doi.org/10.1016/j.jbiomech.2007.11.024[WoS][Crossref]
  • [9] Deschner J., Rath-Deschner B., Agarwal S., Regulation of matrix metalloproteinase expression by dynamic tensile strain in rat fibrochondrocytes. Osteoarthritis Cartilage, 2006, 14, 264–272 http://dx.doi.org/10.1016/j.joca.2005.09.005[Crossref]
  • [10] Ban Y., Wu Y.Y., Yu T., Geng N., Wang Y.Y., Liu X.G., Gong P., Response of osteoblasts to low fluid shear stress is time dependent. Tissue Cell, 2011, 43, 311–317 http://dx.doi.org/10.1016/j.tice.2011.06.003[Crossref]
  • [11] Toyoda T., Seedhom B.B., Yao J.Q., Kirkham J., Brookes S., Bonass W.A., Hydrostatic pressure modulates proteoglycan metabolism in chondrocytes seeded in agarose. Arthritis Rheum. 2003, 48, 2865–2872 http://dx.doi.org/10.1002/art.11250[Crossref]
  • [12] Lima E. G., Mauck R.L., Han S.H., Park S., Ng K.W., Ateshian G.A., Hung C.T., Functional tissue engineering of chondral and osteochondral constructs. Biorheology, 2004, 41, 577–590
  • [13] Tran S. C., Cooley A.J., Elder S.H., Effect of a mechanical stimulation bioreactor on tissue engineered, scaffold-free cartilage. Biotechnol. Bioeng., 2011, 108, 1421–1429 http://dx.doi.org/10.1002/bit.23061[WoS][Crossref]
  • [14] Schulz R. M., Bader A., Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur. Biophys. J., 2007, 36, 539–68 http://dx.doi.org/10.1007/s00249-007-0139-1[WoS][Crossref]
  • [15] Petri M., Ufer K., Toma I., Becher C., Liodakis E., Brand S., Haas P., Liu C., Richter B., Haasper C., von Lewinski G., Jagodzinski M., Effects of perfusion and cyclic compression on in vitro tissue engineered meniscus implants. Knee Surg. Sports Traumatol. Arthrosc., 2011, Jul 13 [Epub ahead of print] [WoS]
  • [16] Jagodzinski M., Breitbart A., Wehmeier M., Hesse E., Haasper C., Krettek C., Zeichen J., Hankemeier S., Influence of perfusion and cyclic compression on proliferation and differentiation of bone marrow stromal cells in 3-dimensional culture. J. Biomech., 2008, 41, 1885–1891 http://dx.doi.org/10.1016/j.jbiomech.2008.04.001[WoS][Crossref]
  • [17] Deschner J., Rath-Deschner B., Reimann S., Bourauel C., Götz W., Jepsen S., Jäger A., Regulatory effects of biophysical strain on rat TMJ discs. Ann. Anat. 2007, 189, 326–328 http://dx.doi.org/10.1016/j.aanat.2007.02.004[Crossref]
  • [18] Darling E. M., Pritchett P.E., Evans B.A., Superfine R., Zauscher S., Guilak F., Mechanical properties and gene expression of chondrocytes on micropatterned substrates following dedifferentiation in monolayer. Cell Mol. Bioeng., 2009, 2:395–404 http://dx.doi.org/10.1007/s12195-009-0077-3[Crossref][WoS]
  • [19] Benya P. D., Shaffer J.D., Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell, 1982, 30:215–224 http://dx.doi.org/10.1016/0092-8674(82)90027-7[Crossref]
  • [20] Darling E. M., Athanasiou K.A., Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J. Orthop. Res., 2005, 23:425–432 http://dx.doi.org/10.1016/j.orthres.2004.08.008[Crossref]
  • [21] Sanchez C., Gabay O., Salvat C., Henrotin Y.E., Berenbaum F., Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts. Osteoarthritis Cartilage, 2009, 17:473–481 http://dx.doi.org/10.1016/j.joca.2008.09.007[Crossref][WoS]
  • [22] Mawatari T., Lindsey D.P., Harris A.H., Goodman S.B., Maloney W.J., Smith R.L., Effects of tensile strain and fluid flow on osteoarthritic human chondrocyte metabolism in vitro. J. Orthop. Res., 2010, 28:907–913 [WoS]
  • [23] Glantschnig H., Varga F., Rumpler M., Klaushofer K., Prostacyclin (PGI2): a potential mediator of c-fos expression induced by hydrostatic pressure in osteoblastic cells. Eur. J. Clin. Invest., 1996, 26:544–548 http://dx.doi.org/10.1046/j.1365-2362.1996.165312.x[Crossref]
  • [24] Wang P., Zhu F., Tong Z., Konstantopoulos K., Response of chondrocytes to shear stress: antagonistic effects of the binding partners Tolllike receptor 4 and caveolin-1. FASEB J., 2011, 25:3401–3415 http://dx.doi.org/10.1096/fj.11-184861[WoS][Crossref]
  • [25] Kanno T., Takahashi T., Ariyoshi W., Tsujisawa T., Haga M., Nishihara T., Tensile mechanical strain up-regulates Runx2 and osteogenic factor expression in human periosteal cells: implications for distraction osteogenesis. J. Oral Maxillofac. Surg., 2005, 63:499–504 http://dx.doi.org/10.1016/j.joms.2004.07.023[Crossref]
  • [26] Ferretti M., Madhavan S., Deschner J., Rath-Deschner B., Wypasek E., Agarwal S., Dynamic biophysical strain modulates proinflammatory gene induction in meniscal fibrochondrocytes. Am. J. Physiol. Cell Physiol., 2006, 290:1610–1615 http://dx.doi.org/10.1152/ajpcell.00529.2005[Crossref]
  • [27] Xu Z., Buckley M.J., Evans C.H., Agarwal S., Cyclic tensile strain acts as an antagonist of IL-1 beta actions in chondrocytes. J. Immunol., 2000, 165:453–460
  • [28] Li Y., Tang L., Duan Y., Ding Y., Upregulation of MMP-13 and TIMP-1 expression in response to mechanical strain in MC3T3-E1 osteoblastic cells. BMC Res. Notes, 2010, 3:309 http://dx.doi.org/10.1186/1756-0500-3-309
  • [29] Huang J., Ballou L.R., Hasty K.A., Cyclic equibiaxial tensile strain induces both anabolic and catabolic responses in articular chondrocytes. Gene, 2007, 404:101–109 http://dx.doi.org/10.1016/j.gene.2007.09.007[Crossref][WoS]
  • [30] Chen D., Zhao M., Mundy G.R., Bone morphogenetic proteins. Growth Factors, 2004, 22, 233–241 http://dx.doi.org/10.1080/08977190412331279890[Crossref]
  • [31] Bhargava M. M., Attia E.T., Murrell G.A., Dolan M.M., Warren R.F., Hannafin J.A., The effect of cytokines on the proliferation and migration of bovine meniscal cells. Am. J. Sports Med., 1999, 27, 636–43
  • [32] Mitsui N., Suzuki N., Maeno M., Yanagisawa M., Koyama Y., Otsuka K., Shimizu N., Optimal compressive force induces bone formation via increasing bone morphogenetic proteins production and decreasing their antagonists production by Saos-2 cells. Life Sciences, 2006, 78, 2697–2706 http://dx.doi.org/10.1016/j.lfs.2005.10.024[Crossref]
  • [33] Zhu J., Zhang X., Wang C., Peng X., Zhang X., Different magnitudes of tensile strain induce human osteoblasts differentiation associated with the activation of ERK1/2 phosphorylation. Int. J. Mol. Sci., 2008, 9, 2322–2332 http://dx.doi.org/10.3390/ijms9122322[WoS][Crossref]
  • [34] Lingaraj K., Poh C.K., Wang W., Vascular endothelial growth factor (VEGF) is expressed during articular cartilage growth and re-expressed in osteoarthritis. Ann. Acad. Med. Singapore, 2010, 39, 399–403
  • [35] Hoberg M., Uzunmehmetoglu G., Sabic L., Reese S., Aicher W.K., Rudert M.. Characterisation of human meniscus cells. Z. Orthop. Ihre Grenzgeb., 2006, 144, 172–178 http://dx.doi.org/10.1055/s-2006-933364[Crossref]
  • [36] Wong M., Siegrist M., Goodwin K., Cyclic tensile strain and cyclic hydrostatic pressure differentially regulate expression of hypertrophic markers in primary chondrocytes. Bone, 2003, 33, 685–93 http://dx.doi.org/10.1016/S8756-3282(03)00242-4[Crossref]
  • [37] Kopf S., Birkenfeld F., Becker R., Petersen W., Stärke C., Wruck C.J., Tohidnezhad M., Varoga D., Pufe T., Local treatment of meniscal lesions with vascular endothelial growth factor. J. Bone Joint Surg. Am., 2010, 92, 2682–2691 http://dx.doi.org/10.2106/JBJS.I.01481[WoS][Crossref]
  • [38] Akiyama H., Control of chondrogenesis by the transcription factor Sox9. Mod. Rheumatol., 2008, 18, 213–219 http://dx.doi.org/10.1007/s10165-008-0048-x[Crossref]
  • [39] Perera P. M., Wypasek E., Madhavan S., Rath-Deschner B., Liu J., Nam J., Rath B., Huang Y., Deschner J., Piesco N., Wu C., Agarwal S., Mechanical signals control SOX-9, VEGF, and c-Myc expression and cell proliferation during inflammation via integrin-linked kinase, B-Raf, and ERK1/2-dependent signaling in articular chondrocytes. Arthritis Res. Ther., 2010, 12, R106. Epub 2010 May 28 http://dx.doi.org/10.1186/ar3039[Crossref][WoS]
  • [40] Rath B., Nam J., Knobloch T.J., Lannutti J.J., Agarwal S., Compressive forces induce osteogenic gene expression in calvarial osteoblasts. J. Biomech., 2008, 41, 1095–1103 http://dx.doi.org/10.1016/j.jbiomech.2007.11.024[WoS][Crossref]
  • [41] Li C. J., Chang J.K., Wang G.J., Ho M.L., Constitutively expressed COX-2 in osteoblasts positively regulates Akt signal transduction via suppression of PTEN activity. Bone, 2011, 48, 286–297 http://dx.doi.org/10.1016/j.bone.2010.09.020[Crossref][WoS]
  • [42] Weyts F. A., Bosmans B., Niesing R., van Leeuwen J.P., Weinans H., Mechanical control of human osteoblast apoptosis and proliferation in relation to differentiation. Calcif. Tissue Int., 2003, 72, 505–512 http://dx.doi.org/10.1007/s00223-002-2027-0[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11536-012-0008-x
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.