Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2011 | 6 | 5 | 588-594

Article title

Activities of brain antioxidant enzymes, lipid and protein peroxidation


Title variants

Languages of publication



Organophosphate pesticides are known to induce oxidative stress and cause oxidative tissue damage, as has been reported in studies concerning acute and chronic intoxication with these compounds.Our objective was to investigate the activities of brain antioxidant enzymes and malonyldialdehyde, as well as the level of carbonyl groups, in rats sub-chronically intoxicated with chlorpyrifos at doses of 0.2, 2 and 5 mg per kg of body weight per day. It was found that chlorpyrifos induces change in brain antioxidant enzymes, such as superoxide dismutase, catalase and glutathione peroxidise, but to a different degree in comparison to proper control values; however, the elevated antioxidant enzymes activities failed to check lipid and protein peroxidation in the brains of rats. Thus, in sub-chronic intoxication with chlorpyrifos, as evidenced by increased level of malonyldialdehyde and carbonyl groups, oxidative stress is induced.Measurements of protein carbonyl groups appeared to give more consistent responses in the rats’ brains when compared to the malonyldialdehyde level after sub-chronic chlorpyrifos treatment.










Physical description


1 - 10 - 2011
9 - 8 - 2011


  • Department of Toxicology, Medical University in Bialystok, 15-222, Bialystok, Poland


  • [1] Toxilogical profile for chlorpyrifos, 1997. U.S. Dep. Of Health services, Public Health Service, Agency for Toxic Substances and Disease Registry
  • [2] Baig S.A., Akhtera N.A., Ashfaq M., As M.R. Determination of the Organophosphorus Pesticide in Vegetables by High-Performance Liquid Chromatography. American-Eurasian J. Agric. & Environ. Sci., 2009, 6(5), 513–519
  • [3] Savolainen K. Understanding the toxic action of organophosphates. In: Krieger, R.I. (Ed.), In: Handbook of pesticide toxicology. 2001, vol. 2. Academic Press, USA, pp. 1013–1043 http://dx.doi.org/10.1016/B978-012426260-7/50053-7[Crossref]
  • [4] Sharma Y., Bashir S., Irshad M., Gupta S.D., Dogra T.D. Effects of acute dimethoate administration on antioxidant status of liver and brain of experimental rats. Toxicology 2005, 206, 49–54. http://dx.doi.org/10.1016/j.tox.2004.06.062[Crossref]
  • [5] Łukaszewicz-Hussain A. Subchronic intoxication with chlorfenvinphos, an organophosphate insecticide, affects rat brain antioxidative enzymes and glutathione level. Food and Chem. Toxicol. 2008, 46, 82–86 http://dx.doi.org/10.1016/j.fct.2007.06.038[WoS][Crossref]
  • [6] Łukaszewicz-Hussain, A. Role of oxidative stress in organophosphate insecticide toxicity-Short review. Pestic. Biochem. Physiol. 2010, 98, 145–150 http://dx.doi.org/10.1016/j.pestbp.2010.07.006[Crossref]
  • [7] Vidyasagar J., Karunakar N., Reddy M.S., Rajnarayana K., Surender T., Krishna, D.R. Oxidative stress and antioxidant status in acute organophosphorus insecticide poisoning. Indian J. Pharmacol. 2004, 36(2), 76–79
  • [8] Kaur P., Radotra B., Minz R.W., Gill K.D. Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain. Neuro. Toxicology 2007, 28, 1208–1219 [WoS]
  • [9] Milatovic D., Gupta R.C., Aschner M. Anticholinesterase toxicity, oxidative stress. Sci. World J. 2006, 6, 295–310
  • [10] Tomlin C.D.S. The Pesticide Manual, A World Compendium, 14th ed.; British Crop Protection Council: Alton, Hampshire, UK, 2006, 186–187
  • [11] Sahin E., Gümüşlü S. Immobilization stress in rat tissues: alter actions in protein oxidation, lipid per oxidation and antioxidant defence system. Comp. Biochem. Physiol. C. Toxicol. Pharmacol., 2007, 144, 342–347 http://dx.doi.org/10.1016/j.cbpc.2006.10.009[Crossref]
  • [12] Levine R. L., Garland D., Oliver C.N., Amici A., Climent I., Lenz A.G., Ahn B.W., Shaltiel S., Stadtman E.R. Determination of carbonyl content in oxidatively modified proteins. Meth. Enzymol. 1990, 186, 464–478. http://dx.doi.org/10.1016/0076-6879(90)86141-H[Crossref]
  • [13] Aebi H. E. Catalase in vitro. Meth. Enzymol. 1984, 105, 121–126. http://dx.doi.org/10.1016/S0076-6879(84)05016-3[Crossref]
  • [14] Lowry O. H., Rosebrough A.L., Randall R.J. Protein measurement with the phenol reagent. J. Biol. Chem. 1951, 193, 265–275.
  • [15] Curl C. L., Fenske R.A., Kissel J.C., Shirai J.H., Moate T.F., Griffith W., Coronado G., Thompson B. Evaluation of take-home organophosphorus pesticide exposure among agricultural workers and their children. Environ. Health Perspect. 2002, 110(12), 787–792. http://dx.doi.org/10.1289/ehp.021100787[Crossref]
  • [16] Costa L. G. Current issues in organophosphate toxicology. Clin. Chim. Acta 2006, 336, 1–13 http://dx.doi.org/10.1016/j.cca.2005.10.008[Crossref]
  • [17] Ranjbar A., Solhi H., Mashayekhi, F.J., Susanabdi A., Rezaie, A., Abdollahi M. Oxidative stress in acute human poisoning with organophosphorus insecticides; a case control study. Environ. Toxicol. and Pharmacol. 2005, 20, 88–91 http://dx.doi.org/10.1016/j.etap.2004.10.007[Crossref]
  • [18] Goel A., Dani V., Hawan D.K. Protective effects of zinc on lipid peroxidation, antioxidant enzymes and hepatic histoarchitecture in chlorpyrifos-induced toxicity Chemico-Biological Interactions 2005, 156, 131–140 http://dx.doi.org/10.1016/j.cbi.2005.08.004[Crossref]
  • [19] Mates J. M., Perez-Gomez C., Nunez D.C.I. Antioxidant enzymes and human diseases. Clin. Biochem. 1999, 32, 595–603 http://dx.doi.org/10.1016/S0009-9120(99)00075-2[Crossref]
  • [20] White R. E. The involvement of free radicals in the mechanisms of monooxygenases. Pharmacol. Ther. 1991, 49, 21–42. http://dx.doi.org/10.1016/0163-7258(91)90020-M[Crossref]
  • [21] Kovacic P. Mechanism of organophosphates (nerve gases and pesticides) and antidotes: electron transfer and oxidative stress. Curr. Med. Chem. 2003, 10, 2705–2709 http://dx.doi.org/10.2174/0929867033456314[Crossref]
  • [22] Shacter E. Quantification and significance of protein oxidation in biological samples. Drug Met. Rev., 2000, 32, 307–326 http://dx.doi.org/10.1081/DMR-100102336[Crossref]
  • [23] Ho Y. S., Gargano M., Cao J., Bronson R.T., Wittman T., Fazekas T. Reduced fertility in female mice lacking copper-zinc dismutase. J. Biol. Chem. 1998, 203, 7765–7769 http://dx.doi.org/10.1074/jbc.273.13.7765[Crossref]
  • [24] Kono Y., Fridovich I. Superoxide radical inhibits catalase, J. Biol. Chem. 1982, 257, 5751–5754
  • [25] Yu B. P. Cellular defenses against damage from reactive oxygen species, Physiol. Rev. 1994, 74, 139–162
  • [26] Girotti A. W. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J. Lipid Res. 1998, 39, 1529–1542
  • [27] Mueller S., Riedel H.D., Stremmel W. Direct evidence for catalase as the predominant H2O2-removing enzyme in human erythrocytes. Blood, 1997, 90, 4973–4978
  • [28] Shacter E. Protein oxidative damage. Methods Enzym., 2000, 319, 428–436 http://dx.doi.org/10.1016/S0076-6879(00)19040-8[Crossref]
  • [29] Possamai F. P., Fortunato J.J., Feier G., Agostinho F.R., Quevedo J., Filho, D.W., Dal-Pizzol F. Oxidative stress after acute and sub-chronic malathion intoxication in Wistar rats. Environm. Toxicol. Pharmacol. 2007, 23, 198–204 http://dx.doi.org/10.1016/j.etap.2006.09.003[Crossref][WoS]
  • [30] Yarsan E., Tanyuksel M., Celik S., Aydin A. Effects of aldicarb and malathion on lipid peroxidation. Bull. Environ. Contam. Toxicol. 1999, 63, 575–581. http://dx.doi.org/10.1007/s001289901019[Crossref]
  • [31] Haberland M. E., Fong D., Cheng L. Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits, Science, 1988, 241, 215–218 http://dx.doi.org/10.1126/science.2455346[Crossref]
  • [32] Kim J. G., Sabbagh F., Santanam N., Wilcox J. N., Medford R.M., Parthasarathy S. Generation of a polyclonal antibody against lipid peroxidemodified proteins, Free Radical Biol. Med., 1997, 23, 251–259 http://dx.doi.org/10.1016/S0891-5849(96)00615-6[Crossref]
  • [33] Videira R. A., Antunes-Madeira M.C., Lopes V.I., Madeira, V.M. Changes induced by malathion, methylparation and parathion on membrane lipid physicochemical properties correlate with their toxicity. Biochem. Biophys. Acta 2001, 1511, 360–368 http://dx.doi.org/10.1016/S0005-2736(01)00295-4[Crossref]
  • [34] Evans P., Larys L., Halliwell B. Measurement of protein carbonyls in human brain tissues. Methods Enzym. 1999, 300, 145–156 http://dx.doi.org/10.1016/S0076-6879(99)00122-6[Crossref]
  • [35] Dalle-Donne I., Rossi R., Giustarini D., Milzani A., Colombo R. Protein carbonyl groups level as biomarker of oxidative stress. Clin. Chim. Acta 2003, 329, 23–38 http://dx.doi.org/10.1016/S0009-8981(03)00003-2[Crossref]
  • [36] Stadtman E. R. Determination of carbonyl content in oxidatively modified proteins, Methods Enzymol. 1990, 186, 464–478 http://dx.doi.org/10.1016/0076-6879(90)86141-H[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.