Preferences help
enabled [disable] Abstract
Number of results
2011 | 6 | 4 | 490-496
Article title

Synergistic effects of apelin and leptin on isolated rat pulmonary arteries

Title variants
Languages of publication
Apelin (AP) and leptin (LEP) are adipokines with vasomotor actions. Taking into account the published data on the role of obesity in the development of pulmonary hypertension, we studied the implications of apelin on leptin relaxing effects on isolated rat pulmonary arteries. LEP had vasodilatatory effects on phenylephrine-precontracted rat pulmonary arteries from normal and ovalbumin-sensitized rats, but not on rats with monocrotaline-induced pulmonary hypertension. AP13 pretreatment increased LEP effects by one-half. Our studies revealed the existence of synergistic favorable effects of these adipokines on pulmonary vessels.
Physical description
1 - 8 - 2011
1 - 6 - 2011
  • Department of Functional Sciences, Faculty of Medicine, “Gr T Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
  • Department of Functional Sciences, Faculty of Medicine, “Gr T Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
  • Department of Functional Sciences, Faculty of Medicine, “Gr T Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
  • [1] Haynes WG, Sivitz WI, Morgan DA, Walsh SA, Mark AL. Sympathetic and cardiorenal actions of leptin. Hypertension. 1997;30(3 Pt 2):619–623 [Crossref]
  • [2] Bełtowski J, Jamroz-Wiśniewska A, Borkowska E, Wójcicka G. Up-regulation of renal Na+, K+-ATPase: the possible novel mechanism of leptin-induced hypertension. Pol J Pharmacol. 2004;56(2):213–222
  • [3] Dardeno TA, Chou SH, Moon HS, Chamberland JP, Fiorenza CG, Mantzoros CS. Leptin in human physiology and therapeutics. Front Neuroendocrinol. 2010;31(3):377–393[WoS][Crossref]
  • [4] Anfossi G, Russo I, Doronzo G, Pomero A, Trovati M. Adipocytokines in atherothrombosis: focus on platelets and vascular smooth muscle cells. Mediators Inflamm. 2010;2010:174341[Crossref][WoS]
  • [5] Gálvez B, de Castro J, Herold D, Dubrovska G, Arribas S, González MC, Aranguez I, Luft FC, Ramos MP, Gollasch M, Fernández Alfonso MS. Perivascular adipose tissue and mesenteric vascular function in spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol. 2006;26(6):1297–1302[Crossref]
  • [6] Gómez-Ambrosi J, Salvador J, Silva C, Pastor C, Rotellar F, Gil MJ, Cienfuegos JA, Frühbeck G. Increased cardiovascular risk markers in obesity are associated with body adiposity: role of leptin. Thromb Haemost. 2006;95(6):991–996
  • [7] Biasucci LM, Graziani F, Rizzello V, Liuzzo G, Guidone C, De Caterina AR, Brugaletta S, Mingrone G, Crea F. Paradoxical preservation of vascular function in severe obesity. Am J Med. 2010;123(8):727–734[Crossref]
  • [8] Frühbeck G, Salvador J. Relation between leptin and the regulation of glucose metabolism. Diabetologia. 2000;43(1):3–12[Crossref]
  • [9] Beltowski J, Wójcicka G, Borkowska E. Human leptin stimulates systemic nitric oxide production in the rat. Obes Res. 2002;10(9):939–946.[Crossref]
  • [10] Shek EW, Brands MW, Hall JE. Chronic leptin infusion increases arterial pressure. Hypertension. 1998;31(1 Pt 2):409–414 [Crossref]
  • [11] Haynes WG, Sivitz WI, Morgan DA, Walsh SA, Mark AL. Sympathetic and cardiorenal actions of leptin. Hypertension. 1997;30(3 Pt 2):619–623 [Crossref]
  • [12] Nakagawa K, Higashi Y, Sasaki S, Oshima T, Matsuura H, Chayama K. Leptin causes vasodilation in humans. Hypertens Res. 2002;25(2):161–165[Crossref]
  • [13] Sartor DM, Verberne AJ. Gastric leptin: a novel role in cardiovascular regulation. Am J Physiol Heart Circ Physiol. 2010;298(2):H406–H414[Crossref]
  • [14] Witzenrath M, Ahrens B, Kube SM, Hocke AC, Rosseau S, Hamelmann E, Suttorp N, Schütte H. Allergic lung inflammation induces pulmonary vascular hyperresponsiveness. Eur Respir J. 2006;28(2):370–377[Crossref]
  • [15] Uydeş-Doğan BS, Akar F, Zengil H, Abacioğlu N, Kanzik I. Effect of ovalbumin challenge on endothelial reactivity of pulmonary arteries from sensitized guinea-pigs. Pulm Pharmacol. 1995;8(2–3):115–122 [Crossref]
  • [16] Kapilevich LV, Nosarev AV, Djakova EJ, Ogorodova LM, Zaitseva TN, Davletjarova KV, Kovalev IV, Baskakov MB, Sazonov AE, Medvedev MA. Specific adrenergic responses of smooth muscles in the vascular wall of guinea pig pulmonary arteries during ovalbumin sensitization. Bull Exp Biol Med. 2008;145(6):673–675[Crossref][WoS]
  • [17] Greenberg B, Rhoden K, Barnes PJ. Endothelium-dependent relaxation of human pulmonary arteries. Am J Physiol. 1987;252(2 Pt 2):H434–H438
  • [18] Crawley DE, Liu SF, Evans TW, Barnes PJ. Inhibitory role of endothelium-derived relaxing factor in rat and human pulmonary arteries. Br J Pharmacol. 1990;101(1):166–170 [Crossref]
  • [19] Dorfmüller P, Perros F, Balabanian K, Humbert M. Inflammation in pulmonary arterial hypertension. Eur Respir J. 2003;22(2):358–363[Crossref]
  • [20] Ito KM, Sato M, Ushijima K, Nakai M, Ito K. Alterations of endothelium and smooth muscle function in monocrotaline-induced pulmonary hypertensive arteries. Am J Physiol Heart Circ Physiol. 2000;279(4):H1786–1795
  • [21] Abe K, Shimokawa H, Morikawa K, Uwatoku T, Oi K, Matsumoto Y, Hattori T, Nakashima Y, Kaibuchi K, Sueishi K, Takeshit A. Long-term treatment with a Rho-kinase inhibitor improves monocrotaline-induced fatal pulmonary hypertension in rats. Circ Res. 2004;94(3):385–393[Crossref]
  • [22] Gurzu B., Dumitriu I.L., Slatineanu S.M., Petrescu G. The role of endothelium in apelin induced vascular relaxation. Hypertension, 2007;50(4):812–812
  • [23] Andersen CU, Markvardsen LH, Hilberg O, Simonsen U. Pulmonary apelin levels and effects in rats with hypoxic pulmonary hypertension. Respir Med. 2009;103(11):1663–1671[Crossref]
  • [24] Cavalher-Machado SC., Tavares de Lima W., Damazo A., Frias Carvalho V., Martins MA, Silva PMR, Sannomiya P. Down-regulation of mast cell activation and airway reactivity in diabetic rats: role of insulin. Eur Respir J 24: 552–558; 200
  • [25] Lourenço AP, Roncon-Albuquerque R Jr, Brás-Silva C, Faria B, Wieland J, Henriques-Coelho T, Correia-Pinto J, Leite-Moreira AF. Myocardial dysfunction and neurohumoral activation without remodeling in left ventricle of monocrotaline-induced pulmonary hypertensive rats. Am J Physiol Heart Circ Physiol. 2006;291(4):H1587–1594[Crossref]
  • [26] Sweeney M, Beddy D, Honner V, Sinnott B, O’Regan RG, McLoughlin P. Effects of changes in pH and CO2 on pulmonary arterial wall tension are not endothelium dependent. J Appl Physiol. 1998;85(6):2040–2046
  • [27] Athyros VG, Tziomalos K, Karagiannis A, Anagnostis P, Mikhailidis DP. Should adipokines be considered in the choice of the treatment of obesity-related health problems? Curr Drug Targets. 2010;11(1):122–135[Crossref][WoS]
  • [28] Vecchione C, Maffei A, Colella S, Aretini A, Poulet R, Frati G, Gentile MT, Fratta L, Trimarco V, Trimarco B, Lembo G. Leptin effect on endothelial nitric oxide is mediated through Akt-endothelial nitric oxide synthase phosphorylation pathway. Diabetes. 2002;51(1):168–173[Crossref]
  • [29] Lahm T, Crisostomo PR, Markel TA, Wang M, Wang Y, Tan J, Meldrum DR. Selective estrogen receptor-alpha and estrogen receptor-beta agonists rapidly decrease pulmonary artery vasoconstriction by a nitric oxide-dependent mechanism. Am J Physiol Regul Integr Comp Physiol. 2008;295(5):R1486–1493[WoS][Crossref]
  • [30] Kelly LJ, Undem BJ, Adams GK 3rd. Antigen-induced contraction of guinea pig isolated pulmonary arteries and lung parenchyma. J Appl Physiol. 1993;74(4):1563–1569
  • [31] Guignabert C, Raffestin B, Benferhat R, Raoul W, Zadigue P, Rideau D, Hamon M, Adnot S, Eddahibi S. Serotonin transporter inhibition prevents and reverses monocrotaline-induced pulmonary hypertension in rats. Circulation. 2005;111(21):2812–9281[Crossref]
  • [32] Liu L, Liu H, Visner G, Fletcher BS. Sleeping Beauty-mediated eNOS gene therapy attenuates monocrotaline-induced pulmonary hypertension in rats. FASEB J. 2006;20(14):2594–2596[Crossref]
  • [33] Lembo G, Vecchione C, Fratta L, Marino G, Trimarco V, d’Amati G, Trimarco B. Leptin induces direct vasodilation through distinct endothelial mechanisms. Diabetes. 2000;49(2):293–297[Crossref]
  • [34] Knudson JD, Dincer UD, Zhang C, Swafford AN Jr, Koshida R, Picchi A, Focardi M, Dick GM, Tune JD. Leptin receptors are expressed in coronary arteries, and hyperleptinemia causes significant coronary endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2005;289(1):H48–56[Crossref]
  • [35] Kimura K, Tsuda K, Baba A, Kawabe T, Boh-oka S, Ibata M, Moriwaki C, Hano T, Nishio I. Involvement of nitric oxide in endothelium-dependent arterial relaxation by leptin. Biochem Biophys Res Commun. 2000;273(2):745–749[Crossref]
  • [36] Mihai CA, Dumitriu IL, Dinca M, Slatineanu SM, Costuleanu M, Gurzu B, Petrescu Gh. Protective effects of apelin on pulmonary vessels. In: Lupusoru CE and Tartau L (ed.), Adverse effects of pharmacologic active substances: from bench to bedside. Iasi, Junimea Publishing House, 2009; 278–285
  • [37] Jia YX, Lu ZF, Zhang J, Pan CS, Yang JH, Zhao J, Yu F, Duan XH, Tang CS, Qi YF. Apelin activates L-arginine/nitric oxide synthase/nitric oxide pathway in rat aortas. Peptides. 2007;28(10):2023–2029[WoS][Crossref]
  • [38] Barnes G, Japp AG, Newby DE. Translational promise of the apelin-APJ system. Heart. 2010;96(13):1011–1016[WoS][Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.