Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2011 | 6 | 3 | 331-340

Article title

Effects of angiotensin II receptor antagonists on anxiety and some oxidative stress markers in rat

Content

Title variants

Languages of publication

EN

Abstracts

EN
In addition to its known classical roles, the renin angiotensin system (RAS) has more subtle functions which include the regulation of emotional responses. Previous studies regarding the anxiety related behavior of RAS have showed controversial results. There is also evidence that oxidative stress accompanies angiotensin II infusion, but the role of AT1/AT2 specific receptors is not clear. The aim of this study was to evaluate the effects of central angiotensin II receptor blockers on anxiety state and oxidative stress. Behavioral testing included elevated plus maze, while oxidative stress status was measured though the extent of a lipid peroxidation product (malondialdehyde-MDA) and the specific activity of some defense antioxidant enzymes (superoxide dismutase-SOD and glutathione peroxidase-GPx). The rats treated with angiotensin II spent significantly less time in the open-arms of elevated-plus-maze, while the administration of losartan resulted in a significant increase of this time. We observed a significant increase of MDA concentration in the angiotensin II group and a decrease of MDA levels in both losartan and PD-123177 groups. In addition, a significant correlation was seen between the time spent in the open arms and oxidative stress markers. These findings could lead to important therapeutic aspects regarding the use of angiotensin II receptor blockers in anxiety-related disorders.

Publisher

Journal

Year

Volume

6

Issue

3

Pages

331-340

Physical description

Dates

published
1 - 6 - 2011
online
8 - 4 - 2011

Contributors

author
  • Department of Biology, Alexandru Ioan Cuza University University, 700506, Iasi, Romania
author
author
  • Department of Biology, Alexandru Ioan Cuza University University, 700506, Iasi, Romania
  • GR. T. Popa University of Medicine and Pharmacy, 700115, Iasi, Romania
author

References

  • [1] Von Bohlen und Halbach O, Albrecht D. The CNS rennin angiotensin system. Cell Tissue Res. 2006;326: 599–616 http://dx.doi.org/10.1007/s00441-006-0190-8[Crossref]
  • [2] Haulica I, Bild W, Serban DN. Angiotensin peptides and their pleiotropic actions. J Renin Angiotensin Aldosterone Syst. 2005;6: 121–131 http://dx.doi.org/10.3317/jraas.2005.018[Crossref]
  • [3] Ciobica A, Bild W, Hritcu L, Haulica I. Brain reninangiotensin system in cognitive function: preclinical findings and implications for prevention and treatment of dementia. Acta Neurol Belg. 2009;109: 171–180
  • [4] Gard PR. Angiotensin as a target for the treatment of Alzheimer’s disease, anxiety and depression. Expert Opin Ther Targets. 2004;8: 7–14 http://dx.doi.org/10.1517/14728222.8.1.7[Crossref]
  • [5] Braszko JJ, Kułakowska A, Winnicka MM. Effects of angiotensin II and its receptor antagonists on motor activity and anxiety in rats. J Physiol Pharmacol. 2003;54: 271–281
  • [6] Llorens-Cortes C, Mendelsohn FA. Organisation and functional role of the brain angiotensin system. J Renin Angiotensin Aldosterone Syst. 2002;3suppl 1:39–48 http://dx.doi.org/10.3317/jraas.2002.029[Crossref]
  • [7] de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev. 2000;52: 415–472
  • [8] Hritcu L, Bild W, Ciobica A, Artenie V, Haulica I. Behavioral changes induced by angiotensin AT1 receptors blockade in the rat brain. Eur. Psychiatry. 2009;24suppl 1:S859 http://dx.doi.org/10.1016/S0924-9338(09)71092-2[Crossref]
  • [9] Barnes NM, Costall B, Kelly ME, Murphy DA, Naylor RJ. Anxiolytic-like action of DuP753, a non-peptide angiotensin II receptor antagonist. Neuroreport. 1990;1: 20–21 http://dx.doi.org/10.1097/00001756-199009000-00006[Crossref]
  • [10] Kaiser FC, Palmer GC, Wallace AV, Carr RD, Fraser-Rae L, Hallam C. Antianxiety properties of the angiotensin II antagonist, DUP 753, in the rat using the elevated plus-maze. Neuroreport. 1992;3: 922–924 http://dx.doi.org/10.1097/00001756-199210000-00026[Crossref]
  • [11] Cambursano PT, Haigh SJ, Keightley J, Sutcliffe MA, Gard PR. Positive effects of losartan in laboratory tests indicative of anxiolytic-like activity and the importance of animal strain. J. Pharm. Pharmacol. 1997;49suppl. 4:64
  • [12] Srinivasan J, Suresh B, Ramanathan M. Differential anxiolytic effect of enalapril and losartan in normotensive and renal hypertensive rats. Physiol Behav. 2003;78: 585–591 http://dx.doi.org/10.1016/S0031-9384(03)00036-2[Crossref]
  • [13] Kulakowska A, Karwowska W, Wisniewski K, Braszko JJ. Losartan influences behavioural effects of angiotensin II in rats. Pharmacol Res 1996;34: 109–115 http://dx.doi.org/10.1006/phrs.1996.0073[Crossref]
  • [14] Shepherd J, Bill DJ, Dourish CT, Grewal SS, McLenachan A, Stanhope KJ. Effects of the selective angiotensin II receptor antagonists losartan and PD-123177 in animal models of anxiety and memory. Psychopharmacology (Berl). 1996;126: 206–218 http://dx.doi.org/10.1007/BF02246450[Crossref]
  • [15] Okuyama S, Sakagawa T, Inagami T. Role of the angiotensin II type-2 receptor in the mouse central nervous system. Jpn J Pharmacol. 1999;81: 259–263 http://dx.doi.org/10.1254/jjp.81.259[Crossref]
  • [16] Chabrashvili T, Kitiyakara C, Blau J, Karber A, Aslam S. Effects of ANG II type 1 and 2 receptors on oxidative stress, renal NADPH oxidase, and SOD expression. Am J Physiol Regul Integr Comp Physiol. 2003;285: R117–R124
  • [17] Wang D, Chabrashvili T, Borrego L, Aslam S, Umans JG. Angiotensin II infusion alters vascular function in mouse resistance vessels: roles of O and endothelium. J Vasc Res. 2006;43: 109–119 http://dx.doi.org/10.1159/000089969[Crossref]
  • [18] Laursen JB, Rajagopalan B, Galis Z, Tarpey M, Freeman BA, Harrison DG. Role of superoxide in angiotensin II induced but not catecholamine-induced hypertension. Circulation. 1997;95: 588–593 [Crossref]
  • [19] Yao EH, Fukuda N, Matsumoto T, Kobayashi N, Katakawa M, Yamamoto C et al. Losartan improves the impaired function of endothelial progenitor cells in hypertension via an antioxidant effect. Hypertens Res. 2007;30: 1119–1128 http://dx.doi.org/10.1291/hypres.30.1119[Crossref]
  • [20] Antelava NA, Gongadze NV, Gogolauri MI. Comparative characteristic of angiotensin-converting enzyme inhibitor-captopril and the angiotensin II receptor blokers-losartan action on the oxidative metabolism in experimental hyperlipidemia in rabbits. Georgian Med News. 2007;150: 57–60
  • [21] Yanagitani Y, Rakugi H, Okamura A, Moriguchi K, Takiuchi S, Ohishi M et al. Angiotensin II type 1 receptor-mediated peroxide production in human macrophages. Hypertension. 1999;33: 335–339 [Crossref]
  • [22] Bouayed, J., Rammal, H., Younos, C., Soulimani, R., 2007b. Positive correlation between peripheral blood granulocyte oxidative status and level of anxiety in mice. Eur. J. Phar macol. 564, 146–149 http://dx.doi.org/10.1016/j.ejphar.2007.02.055[Crossref]
  • [23] Karelson E, Bogdanovic N, Garlind A, Winblad B, Zilmer K et al. The cerebrocortical areas in normal brain aging and in Alzheimer’s disease: noticeable differences in the lipid peroxidation level and in antioxidant defense. Neurochem Res. 2001;26: 353–361 http://dx.doi.org/10.1023/A:1010942929678[Crossref]
  • [24] Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 6th ed. San Diego: Academic Press Elsevier; 2006
  • [25] Ciobica A, Hritcu L, Padurariu M, Dobrin R, Bild V. Effects of serotonin depletion on behavior and neuronal oxidative stress status in rat: relevance for anxiety and affective disorders. Adv Med Sci. 2010;55: 289–296 http://dx.doi.org/10.2478/v10039-010-0035-2[Crossref]
  • [26] Ciobica A, Hritcu L, Artenie V, Stoica B, Bild V. Effects of 6-OHDA infusion into the hypothalamic paraventricular nucleus in mediating stress-induced behavioural responses and oxidative damage in rats. Acta Endocrinol. 2009;5: 425–436
  • [27] Hritcu L, Ciobica A, Gorgan L. Nicotine-induced memory impairment by increasing brain oxidative stress. Cent. Eur. J. Biol. 2009;4: 335–342 http://dx.doi.org/10.2478/s11535-009-0029-x[Crossref]
  • [28] Gurzu C, Artenie V, Hritcu L, Ciobica A. Prenatal testosterone improves the spatial learning and memory by protein synthesis in different lobes of the brain in the male and female rat. Cent Eur J Biol. 2008;3: 39–47 http://dx.doi.org/10.2478/s11535-008-0003-z[Crossref]
  • [29] Ichiki T, Labosky PA, Shiota C, Okuyama S, Imagawa Y, Fogo A et al. Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature. 1995;377: 748–750 http://dx.doi.org/10.1038/377748a0
  • [30] Okuyama S, Sakagawa T, Chaki S, Imagawa Y, Ichiki T, Inagami T. Anxiety-like behavior in mice lacking the angiotensin II type-2 receptor. Brain Res. 1999;821: 150–159 http://dx.doi.org/10.1016/S0006-8993(99)01098-7[Crossref]
  • [31] Gard PR, Haigh SJ, Cambursano PT, Warrington CA. Strain differences in the anxiolytic effects of losartan in the mouse. Pharmacol Biochem Behav. 2001;69: 35–40 http://dx.doi.org/10.1016/S0091-3057(01)00491-9[Crossref]
  • [32] Georgiev V, Getova D, Opitz M. Mechanisms of the angiotensin II effects on the exploratory behavior of rats in open field. I. Interaction of angiotensin II with saralasin and catecholaminergic drugs. Methods Find Exp Clin Pharmacol. 1987;9: 297–301
  • [33] Cresswell AG, Gard PR: Behavioural evidence of a paradoxical anxiogenic effect of an angiotensin II (AT1) receptor antagonist. J. Pharm. Pharmacol. 1998;50suppl 1:215
  • [34] Peng JF, Phillips MI. Opposite regulation of brain angiotensin type 1 and type 2 receptors in coldinduced hypertension. Regul Peptides. 2001;97: 91–102 http://dx.doi.org/10.1016/S0167-0115(00)00218-4[Crossref]
  • [35] Gelband CH, Zhu M, Lu D, Reagan LP, Fluharty SJ, Posner P et al. Functional interactions between neuronal AT1 and AT2 receptors. Endocrinology. 1997;138: 2195–2198 http://dx.doi.org/10.1210/en.138.5.2195[Crossref]
  • [36] Braszko JJ. AT(2) but not AT(1) receptor antagonism abolishes angiotensin II increase of the acquisition of conditioned avoidance responses in rats. Behav Brain Res. 2002;131: 79–86 http://dx.doi.org/10.1016/S0166-4328(01)00349-7[Crossref]
  • [37] Bild W, Hritcu L, Ciobica A, Artenie V, Haulica I. Comparative effects of captopril, losartan and PD-123319 on the memory processes in rats. Eur. Psychiatry. 2009;24suppl 1:S860 http://dx.doi.org/10.1016/S0924-9338(09)71093-4[Crossref]
  • [38] Bonini JS, Bevilaqua LR, Zinn CG, Kerr DS, Medina JH. et al. Angiotensin II disrupts inhibitory avoidance memory retrieval. Horm Behav. 2006;50: 308–313 http://dx.doi.org/10.1016/j.yhbeh.2006.03.016[Crossref]
  • [39] Kerr DS, Bevilaqua LR, Bonini JS, Rossato JI, Kohler CA, Medina JH. et al. Angiotensin II blocks memory consolidation through an AT2 receptor dependent mechanism. Psychopharmacology (Berl). 2005;179: 529–535 http://dx.doi.org/10.1007/s00213-004-2074-5[Crossref]
  • [40] Ciobica, W. Bild, I. Haulica, L. Hritcu, O. Arcan. Effects of angiotensin II, its receptor antagonists and captopril on cognitive functions and oxidative stress in rats. J. Neurol. 2009;256suppl 2:194
  • [41] Ciobica A. Bild W. Hritcu L. Artenie V. Haulica I. The importance of oxidative stress in angiotensin II-mediated effects on cognitive functions. Neuropeptides. 2009;43: 420–421
  • [42] Basso N, Cini R, Pietrelli A, Ferder L, Terragno NA. Protective effect of long-term angiotensin II inhibition. Am J Physiol Heart Circ Physiol. 2007;293: 1351–1358 http://dx.doi.org/10.1152/ajpheart.00393.2007[Crossref]
  • [43] Holownia A, Braszko JJ. The effect of angiotensin II and IV on ERK1/2 and CREB signalling in cultured rat astroglial cells. Naunyn Schmiedebergs Arch Pharmacol. 2007;376: 157–163 http://dx.doi.org/10.1007/s00210-007-0192-4[Crossref]
  • [44] Padurariu M, Ciobica A, Hritcu L, Stoica B, Bild W., Stefanescu C. Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett. 2010;469: 6–10 http://dx.doi.org/10.1016/j.neulet.2009.11.033[Crossref]
  • [45] Padurariu M, Ciobica A, Dobrin I, Stefanescu C. Evaluation of antioxidant enzymes activities and lipid peroxidation in schizophrenic patients treated with typical and atypical antipsychotics. Neurosci Lett. 2010;479: 317–320 http://dx.doi.org/10.1016/j.neulet.2010.05.088[Crossref]
  • [46] Hritcu L, Ciobica A, Artenie V. Effects of right-unilateral 6-hydroxydopamine infusion-induced memory impairment and oxidative stress: Relevance for Parkinson’s disease. Cent Eur J Biol. 2008;3: 250–257 http://dx.doi.org/10.2478/s11535-008-0023-8[Crossref]
  • [47] Berry A, Capone F, Giorgio M, Pelicci PG, de Kloet ER. Deletion of the life span determinant p66Shc prevents age-dependent increases in emotionality and pain sensitivity in mice. Exp Gerontol. 2007;42: 37–45 http://dx.doi.org/10.1016/j.exger.2006.05.018[Crossref]
  • [48] Basso N, Altamirano S, Terragno NA, Ferder L, Inserra F. et al. Inhibition of the renin-angiotensin system improves spatial working memory in the senile normal rat. J Hypertens. 2002;20 suppl. 4:S134
  • [49] Schupp N, Schmid U, Rutkowski P, Lakner U, Kanase N, Heidland A, Stopper H. Angiotensin II-induced genomic damage in renal cells can be prevented by angiotensin II type 1 receptor blockage or radical scavenging. Am J Physiol Renal Physiol. 2007 May;292(5):F1427–F1434 http://dx.doi.org/10.1152/ajprenal.00458.2006[Crossref]
  • [50] Machado-Vieira R, Salvadore G, DiazGranados N, Ibrahim L, Latov D, Wheeler-Castillo C, Baumann J, Henter ID, Zarate CA Jr. New therapeutic targets for mood disorders. ScientificWorldJournal. 2010 Apr 13;10:713–726 [Crossref]
  • [51] Behl A, Swami G, Sircar SS, Bhatia MS, Banerjee BD. Relationship of possible stress-related biochemical markers to oxidative/antioxidative status in obsessive-compulsive disorder. Neuropsychobiology. 2010;61(4):210–214 http://dx.doi.org/10.1159/000306591[Crossref]
  • [52] Matsushita M, Kumano-Go T, Suganuma N, Adachi H, Yamamura S, Morishima H, Shigedo Y, Mikami A, Takeda M, Sugita Y. Anxiety, neuroticism and oxidative stress: cross-sectional study in nonsmoking college students. Psychiatry Clin Neurosci. 2010 Aug;64(4):435–441 http://dx.doi.org/10.1111/j.1440-1819.2010.02109.x[Crossref]
  • [53] Salim S, Sarraj N, Taneja M, Saha K, Tejada-Simon MV, Chugh G. Moderate treadmill exercise prevents oxidative stress-induced anxiety-like behavior in rats. Behav Brain Res. 2010 Apr 2;208(2):545–552 http://dx.doi.org/10.1016/j.bbr.2009.12.039[Crossref]
  • [54] Gingrich JA. Oxidative stress is the new stress. Nat Med. 2005;11(12):1281–1282 http://dx.doi.org/10.1038/nm1205-1281[Crossref]
  • [55] Bouayed J, Rammal H, Soulimani R. Oxidative stress and anxiety: Relationship and cellular pathways. Oxid Med Cell Longev. 2009;2(2):63–67 http://dx.doi.org/10.4161/oxim.2.2.7944[Crossref]
  • [56] Rammal H, Bouayed J, Younos C, Soulimani R. Evidence that oxidative stress is linked to anxiety-related behaviour in mice. Brain Behav Immun. 2008;22(8):1156–1159 http://dx.doi.org/10.1016/j.bbi.2008.06.005[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11536-011-0010-8
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.