Preferences help
enabled [disable] Abstract
Number of results
2011 | 6 | 2 | 137-147
Article title

RNA interference and its therapeutic potential

Title variants
Languages of publication
RNA interference is a technique that has become popular in the past few years. This is a biological method to detect the activity of a specific gene within a cell. RNAi is the introduction of homologous double stranded RNA to specifically target a gene’s product resulting in null or hypomorphic phenotypes. This technique involves the degradation of specific mRNA by using small interfering RNA. Both microRNA (miRNA) and small interfering RNA (siRNA) are directly related to RNA interference. RNAi mechanism is being explored as a new technique for suppressing gene expression. It is an important issue in the treatment of various diseases. This review considers different aspects of RNAi technique including its history of discovery, molecular mechanism, gene expression study, advantages of this technique against previously used techniques, barrier associated with this technique, and its therapeutic application.
Physical description
1 - 4 - 2011
17 - 2 - 2011
  • Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, 2200, Denmark
  • School of Biological Sciences, Flinders University, Flinders, SA, 5042, Australia
  • System Biology Research Center, School of Life Sciences, University of Skövde, Box 408, SE-541 28, Skövde, Sweden
  • [1] Alkhalil A., Strand S., Mucker E., Huggins J.W., Jahrling P.B., Ibrahim S.M., et al., Inhibition of Monkeypox virus replication by RNA interference. Virology Journal, 2009, 6:188, doi: 10.1186/1743-422X-6-188[Crossref]
  • [2] Anderson J., Akkina R., et al., HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector. AIDS Research and Therapy, 2005, 13:2(1), 1[Crossref]
  • [3] Aravin A.A., Sachidanandam R., Girard A., Fejes-Toth K., Hannon G.J., et al., Developmentally Regulated piRNA Clusters Implicate MILI in Transposon Control. Science, 2007, 316(5825), 744–747[Crossref]
  • [4] Aza-Blanc P., Cooper C.L., Wagner K., Batalov S., Deveraux Q.L., Cooke M.P., et al., Identification of modulators of TRAIL-induced apoptosis via RNAibased phenotypic screening. Mol Cell., 2003, 12, 627–637[Crossref]
  • [5] Bartel D.P., MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2), 215–233[Crossref]
  • [6] Beal J., Silence is golden:can RNA interference therapeutics deliver? Business trends, 2005, 10, 3
  • [7] Bellemin A., Bonnet M.E., Creusat G., Erbacher P., Behr J.P., et al., Sticky overhangs enhance siRNAmediated gene silencing. PNAS, 2007, 104(41), 16050–16055[Crossref]
  • [8] Berns K., Hijmans E.M., Mullenders J., Brummelkamp T.R., Velds A., Heinerikx M., et al., A large-scale RNAi screen in human cells identifies new components of the p53 pathways. Nature, 2004, 428, 431–437[Crossref]
  • [9] Bertrand J., Pottier M., Vekris A., Opolon P., Maksimenko A., Malvy C., et al., Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem Biophys Res Commun., 2002, 296(4), 1000–1004[Crossref]
  • [10] Brummelkamp T.R., Nijman S.M., Dirac A.M., Bernards R., et al., Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature, 2003, 424, 797–801[Crossref]
  • [11] Brummelkamp T., Bernards R., Agami R., et al., Stable suppression of tumorigenicity by virusmediated RNA interference. Cancer Cel, 2002, 2(3), 243[Crossref]
  • [12] Carthew R., RNA interference: the fragile X syndrome connection. Curr. Biol., 2002, 12(24), 852–854[Crossref]
  • [13] Chen M., Du Q., Zhang H., Wahlestedt C., Liang Z., et al., Vector-based siRNA delivery strategies for high-throughput screening of novel target genes. Journal of RNAi and Gene Silencing, 2005, 1(1), 5–11
  • [14] Chhabra M., Mittal V., Bhattacharya D., Rana U., Lal S., et al., Chikungunya fever: A re-emerging viral infection. Indian J. Med. Microbiol., 2008, 26(1), 5–12[Crossref]
  • [15] Clayton J., RNA interference: the silent treatment. Nature, 2004, 431(7008), 599–605[Crossref]
  • [16] Czauderna F., Fechtner M., Dames S., Aygun H., Klippel A., Pronk G., Giese K., Kaufmann J., et al., Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res., 2003, 31(11), 2705–2716[Crossref]
  • [17] Dasha P.K., Tiwaria M., Santhosha S.R., Paridaa M., Rao P.V.L., et al., RNA interference mediated inhibition of Chikungunya virus replication in mammalian cells. Biochemical and Biophysical Research Communications, 2008, 376(4), 718–722[Crossref]
  • [18] De Clercq E., Acyclic nucleoside phosphonates: past, present and future. Bridging chemistry to HIV, HBV, HCV, HPV, adeno-, herpes-, and poxvirus infections: the phosphonate bridge. Biochem Pharmacology, 2007, 73, 911–922[Crossref]
  • [19] DeVincenzo J., Lambkin-Williams R., Wilkinson T., Cehelsky J., Nochur S., Walsh E., Meyers R., Gollob J., Vaishnaw A., et al., A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. PNAS, 2010, 107(19), 8800–8805[Crossref]
  • [20] Downward J. RNA interference. BMJ, 2004, 328, 1245–1248[Crossref]
  • [21] Elbashir S.M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T., et al., Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411, 494–498[Crossref]
  • [22] Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello, C.C., et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391, 806–811[Crossref]
  • [23] Fowler T., Bamberg S., Möller P., Klenk H., Meyer T.F., Becker S., Rudel T., et al., Inhibition of Marburg virus protein expression and viral release by RNA interference. J. Gen. Virol., 2005, 86, 1181–1188[Crossref]
  • [24] Fuchs U., Damm-Welk C., Borkhardt A., et al., Silencing of disease-related genes by small interfering RNAs. Curr. Mol. Med. 2004, 4(5), 507–517[Crossref]
  • [25] Fumitaka T., Takahiro O., et al., Therapeutic potential of RNA interference against cancer. Cancer Science, 2006, 97(8), 689–696[Crossref]
  • [26] Futami T., Miyagishi M., Seki M., Taira K. Indu, et al., ction of apoptosis in HeLa cells with siRNA expression vector targeted against bcl-2. Nucleic Acids Res. Suppl., 2002, (2), 251–252 [Crossref]
  • [27] Gao Y., Yu L., Wei W., Li J., Luo Q., Shen J., et al., Inhibition of hepatitis B virus gene expression and replication by artificial microRNA. World Journal of Gastroenterology, 2008, 14(29), 4684–4689[Crossref]
  • [28] Genc S., Tolga F.K., Genc K., et al., RNA interference in neuroscience. Science Direct, 2004, 132(2), 260–270
  • [29] Gong H., Liu C., Liu D., Liang C., et al., The role of small RNAs in human diseases: potential troublemaker and therapeutic tools. Med. Res. Rev., 2005, 25(3), 361–381[Crossref]
  • [30] Guo S., Kemphues K.J., et al., par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 1995, 81, 611–620[Crossref]
  • [31] Großhans H., Filipowicz W., et al., The expanding world of small RNAs. Nature, 2008, 451, 414–416[Crossref]
  • [32] Guru T., A silence that speaks volumes. Nature, 2000, 404, 804–808[Crossref]
  • [33] Hammond S.M., Boettcher S., Caudy A.A., Kobayashi R., Hannon G.J., et al., Argonaute2, a link between genetic and biochemical analyses of RNAi. Science, 2001, 293(5532), 1146–1150[Crossref]
  • [34] Thomson J., Hemann M., Hernando-Monge E., Mu D., Goodson S., Powers S., Cordon-Cardo C., Lowe S., Hannon G., Hammond S., et al., A microRNA polycistron as a potential human oncogene. Nature, 2005, 435(7043), 828–833[Crossref]
  • [35] Heidel J., Hu S., Liu X., Triche T., Davis M., et al., Lack of interferon response in animals to naked siRNAs. Nat. Biotechnol., 2005, 22(12), 1579–1582[Crossref]
  • [36] Holen T., Amarzguioui M., Wiiger M.T., Babaie E., Prydz H., et al., Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res., 2002, 30(8), 1757–1766[Crossref]
  • [37] Hutvagner G., Zamore P., et al., A microRNA in a multiple-turnover RNAi enzyme complex. Science, 2002, 297(5589), 2056–2060[Crossref]
  • [38] Jackson A., Bartz S., Schelter J., Kobayashi S., Burchard J., Mao M., Li B., Cavet G., Linsley P., et al., Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol., 2003, 21(6), 635–637[Crossref]
  • [39] Kapadia S.B., Brideau-Andersen A., Chisari F.V., et al., Interference of hepatitis C virus RNA replication by short interfering RNAs. PNAS, 2008, 100(4), 2014–2018[Crossref]
  • [40] Kariko K., Bhuyan P., Capodici J., Weissman D., et al., Small interfering RNAs mediate sequenceindependent gene suppression and induce immune activation by signaling through toll-like receptor 3. J. Immunol., 2004, 172(11), 6545–6549
  • [41] Kim S., Peer D., Kumar P., Subramanya S., Wu H., Asthana D., Habiro K., Yang Y., Manjunath N., Shimaoka M., Shankar P., et al., RNAi-mediated CCR5 Silencing by LFA-1-targeted Nanoparticles Prevents HIV Infection in BLT Mice. Molecular Therapy, 2010, 18(2), 370–376
  • [42] Kumar P., Ban H.S., Kim S.S., Wu H., Pearson T., Greiner D.L., Laouar A., Manjunath N., Shultz L.D., Lee S.K., Shankar P., et al., T Cell-Specific siRNA Delivery Suppresses HIV-1 Infection in Humanized Mice. Cell, 2008, 134, 577–586[Crossref]
  • [43] Lee M.M., Coburn G., McClure M.O., Cullen B.R., et al., Inhibition of human immunodeficiency virus type 1 replication in primary macrophages by using tat- or CCR5-specific small interfering RNAs expressed from a lentivirus vector. J. Virol., 2003, 77, 11964–11972[Crossref]
  • [44] Liu YP, Gruber J, Haasnoot J, Konstantinova P., Berkhout B., et al., RNAi-mediated inhibition of HIV-1 by targeting partially complementary viral sequences. Nucl. Acids Res. 2009, doi: 10.1093/nar/gkp644 [Crossref]
  • [45] Ma Z., Li J., He F., Wilson A., Pitt B., Li S., et al., Cationic lipids enhance siRNA-mediated interferon response in mice. Biochem. Biophys. Res. Commun., 2005, 330(3), 755–759[Crossref]
  • [46] Matranga C., Tomari Y., Shin C., Bartel D.P., Zamore P.D., et al., Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell, 2005, 123, 607–620[Crossref]
  • [47] Martinez L., Naguibneva I., Lehrmann H., Vervisch A., Tchenio T., Lozano G., Harel-Bellan A., et al., Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proc. Natl. Acad. Sci. 2002, USA 99(23), 14849–14854[Crossref]
  • [48] Matthew L., RNAi for plant functional genomics. Comp Func. Genom., 2004, 5, 240–244[Crossref]
  • [49] McCaffrey A.P., Meuse L., Pham T.T., Conklin D.S., Hannon G.J., Kay M.A., et al., RNA interference in adult mice. Nature, 2002, 418, 38–39[Crossref]
  • [50] McCaffrey A.P., Nakai H., Pandey K., Huang Z., Salazar F.H., Xu H., Wieland S.F., Marion P.L., Kay M.A., et al., Inhibition of hepatitis B virus in mice by RNA interference. Nature Biotechnology, 2003, 21, 639–644[Crossref]
  • [51] Miller V., Xia H., Marrs G., Gouvion C., Lee G., Davidson B., Paulson H., et al., Allele-specific silencing of dominant disease genes. Proc. Natl. Acad. Sci., 2003, 100(12), 7195–7200[Crossref]
  • [52] Morrissey D., Blanchard K., Shaw L., Jensen K., Lockridge J., Dickinson B., McSwiggen J., Vargeese C., Bowman K., Shaffer C., Polisky B., Zinnen S., et al., Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology, 2005, 41(6), 1349–1356[Crossref]
  • [53] Napoli C., Lemieux C., Jorgensen R., et al., Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell, 1990, 2, 279–289[Crossref]
  • [54] Novina C.D., Murray M.F., Dykxhoorn D.M., Beresford P.J., Riess J., Lee S.K., Collman R.G., Lieberman J., Shankar P., Sharp P.A., et al., siRNAdirected inhibition of HIV-1 infection. Nat. Med., 2002, 8(7), 681–686
  • [55] Peyman A., Helsberg M., Kretzschmar G., Mag M., Grabley S., Uhlmann E., et al., Inhibition of viral growth by antisense oligonucleotides directed against the IE110 and the UL30 mRNA of herpes simplex virus type-1. Biol. Chem. Hoppe Seyler. 1995, 376(3), 195–198
  • [56] Qiuwei P., Rong C., Xinyuan L., Cheng Q., et al., A novel strategy for cancer gene therapy: RNAi. Chinese Science Bulletin, 2006, 51(10), 1145–1151[Crossref]
  • [57] Robert W., Williamsand, M.R., et al., Argonaute1 is required for efficient RNA interference in Drosophila embryos. Proc. Natl. Acad. Sci., 2002, 99(10), 6889–6894[Crossref]
  • [58] Romano N., Macino G., et al., Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol. Microbiol., 1992, 6, 3343–3353[Crossref]
  • [59] Sen G.L., Blau H.M., et al., A brief history of RNAi: the silence of the genes. The FASEB Journal, 2006, 20, 1293–1299[Crossref]
  • [60] Scherer L., Rossi J., et al., Approaches for the sequence-specific knockdown of mRNA. Nat. Biotechnol., 2003, 21(12), 1457–1465[Crossref]
  • [61] Schubert S., Grunweller A., Erdmann V., Kurreck J., et al., Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J. Mol. Biol., 2005, 348(4), 883–893[Crossref]
  • [62] Shankar P., Song E., Lee S.K., Dykxhoom D.M., Novina C., Crawford K., Cerny J., Sharp P.A., Lieberman J., Swamy M.N., et al., Sustained siRNAmediated HIV Inhibition in Primary Macrophages. Abstr. 10th Conf. Retrovir. Oppor. Infect., 2003, 225
  • [63] Slimane R.H., Lepelletier Y., Lopez N., Garbay C., Raynaud F., et al., Short interfering RNA (siRNA), a novel therapeutic tool acting on angiogenesis. Science Direct, 2007, 89(10), 1234–1244
  • [64] Soutschek J., Akinc A., Bramlage B., Charisse K., Constien R., Donoghue M., Elbashir S., Geick A., Hadwiger P., Harborth J., John M., Kesavan M., Lavine G., Pandey R., Racie T., Rajeev K., Rohl I., Toudjarska I., Wang G., Wuschko S., Bumcrot D., Koteliansky V., Limmer S., Manoharan M., Vornlocher H., et al., Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature, 2004, 432(7014), 173–178[Crossref]
  • [65] Susan L.U., The therapeutic potential of RNA interference. FEBS Letters, 2005, 579, 5996–6007[Crossref]
  • [66] Tewari M., Vidal M., et al., RNAi on the apoptosis TRAIL: the mammalian cell genetic screen comes of age. Dev. Cell., 2003, 5, 534–535[Crossref]
  • [67] Tomanin R., Scarpa M., et al., Why do we need new gene therapy viral vectors? Characteristics, limitations and future perspectives of viral vector transduction. Curr. Gene Ther., 2004, 4(4), 357–372 [Crossref]
  • [68] Wilda M., Fuchs U., Wossmann W., Borkhardt A., et al., Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene, 2002, 21(37), 5716–5724[Crossref]
  • [69] Williams M., Clark G., Sathasivan K., Islam A.S., et al., RNA Interference and its Application in Crop Improvement. Plant tissue culture and Biotechnology, 2004, 1, 18
  • [70] Wilson J.A., Richardson C.D., et al., Hepatitis C Virus Replicons Escape RNA Interference Induced by a Short Interfering RNA Directed against the NS5b Coding Region. Journal of Virology, 2005, 79(11), 7050–7058[Crossref]
  • [71] Xia H., Mao Q., Paulson H.L., Davidson B.L., et al., siRNA-mediated gene silencing in vitro and in vivo. Nat. Biotechnol., 2002, 20, 1006–1010[Crossref]
  • [72] Xu Y., Zhang H., Thormeyer D., Larsson O., Du Q., Elmen J., Wahlestedt C., Liang Z., et al., Effective small interfering RNAs and phosphorothioate antisense DNAs have different preferences for target sites in the luciferase mRNAs. Biochem. Biophy. Res. Commun., 2003, 306(3), 712–717[Crossref]
  • [73] Yang G., Thompson J., Fang B., Liu J., et al., Silencing of H-ras gene expression by retrovirusmediated siRNA decreases transformation efficiency and tumor growth in a model of human ovarian cancer. Oncogene, 2003, 22(36), 5694–5701[Crossref]
  • [74] Zentilin L., Giacca M., et al., In vivo transfer and expression of genes coding for short interfering RNAs. Curr. Pharm. Biotechnol., 2004, 5(4), 341–347[Crossref]
  • [75] Zhang W., Sumita B., Rajeswari S., Lockey R.F., Mohapatra S.S., et al., Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene. Nature Medicine, 2005, 11(1), 56–62[Crossref]
  • [76] Ryan K.J., Ray C.G. Sherris Medical Microbiology, (4th ed.), McGraw Hill. pp. 624–628. ISBN 0-8385-8529-9, 2004
  • [77] Pfeifer A., Eigenbrod S., Al-Khadra S., Hofmann A., Mitteregger G., Moser M., Bertsch U., Kretzschmar H. Lentivector-mediated RNAi efficiently suppresses prion protein and prolongs survival of scrapie-infected mice. J. Clin. Invest., 2006, 116, 3204–3210[Crossref]
  • [78] White M.D., Farmer M., Mirabile I., Brandner S., Collinge J., Mallucci G.R. Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease. PNAS, 2008, 105(29), 10238–10243[Crossref]
  • [79] Geng Y.J., Libby P. Progression of atheroma: a struggle between death and procreation. Arterioscler Thromb Vasc Biol., 2002, 22, 1370–1380[Crossref]
  • [80] Frank-Kamenetsky M., Grefhorst A., Anderson N.N., Racie T.S., Bramlage B., Akinc A., Butler D., Charisse K., Dorkin R., Fan Y. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl. Acad. Sci. USA., 2008, 105, 11915–11920[Crossref]
  • [81] Ukomadu C., Dutta A. Inhibition of cdk2 activating phosphorylation by mevastatin. J Biol Chem., 2003, 278, 4840–4846[Crossref]
  • [82] Barth J., Volknandt W. Evaluation of small hairpin RNA silencing efficiency in live cells by cotransfection of two fluorescent probes. Anal Biochem., 2008, 379(1), 133–135[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.