Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2011 | 6 | 2 | 234-242

Article title

Comparing hyoscine and drotaverine effects on colon in CT colonography

Content

Title variants

Languages of publication

EN

Abstracts

EN
Hyoscine and drotaverine effectiveness was compared for the purposes of achieving optimum distension following insufflation in CT colonography. The in vitro effects of hyoscine and drotaverine on tone and contractility of SM preparations isolated from different areas of human colon were studied by isometric registration of contractile activity. Both medications have a relaxing effect on SM preparations and inhibit their spontaneous contractions. The drotaverine-induced effects were reliably more marked than the hyoscine-induced ones. CT colonography was performed in 70 patients who were injected with equal doses of either hyoscine (n=32) or drotaverine (n=38). The degree of drug-induced distension in both groups was determined by measuring the lumen of the colon on a 2D reconstruction. In most colon areas the width of the distended lumen was greater in the drotaverine-treated patients. We concluded that drotaverine can be used as a means to facilitate colonic distension.

Publisher

Journal

Year

Volume

6

Issue

2

Pages

234-242

Physical description

Dates

published
1 - 4 - 2011
online
17 - 2 - 2011

Contributors

  • Departments of Biophysics, Medical University — Plovdiv, 4002, Plovdiv, Bulgaria
  • Image Diagnostics, Medical University — Plovdiv, 4002, Plovdiv, Bulgaria
  • Pharmacology and Clinical Pharmacology Medical University — Plovdiv, 4002, Plovdiv, Bulgaria
  • Departments of Biophysics, Medical University — Plovdiv, 4002, Plovdiv, Bulgaria
  • Image Diagnostics, Medical University — Plovdiv, 4002, Plovdiv, Bulgaria
  • Social medicine and health management Medical University — Plovdiv, 4002, Plovdiv, Bulgaria
  • Departments of Biophysics, Medical University — Plovdiv, 4002, Plovdiv, Bulgaria
  • Image Diagnostics, Medical University — Plovdiv, 4002, Plovdiv, Bulgaria

References

  • [1] Laghi A., Virtual colonoscopy: clinical application, Eur. Radiol., 2005, 15Suppl 4, D138–141 [Crossref]
  • [2] Deshpande K.K., Summers R.M., Van Uitert R.L., Franaszek M., Brown L., Dwyer A.J., et al., Quality assessment for CT colonography: validation of automated measurement of colonic distention and residual fluid, A.J.R., 2007, 189, 1457–1463
  • [3] Taylor S.A., Halligan S., Goh V., Morley S., Bassett P., Atkin W., et al., Optimizing colonic distention for multi-detector row CT colonography: effect of hyoscine butylbromide and rectal balloon catheter, Radiology, 2003, 229, 99–108 http://dx.doi.org/10.1148/radiol.2291021151[Crossref]
  • [4] Levatter R., Rethinking the argument against glucagon for CT colonography, A.J.R., 2000, 174, 1787–1790
  • [5] Morrin M.M., Farrell R.J., Keogan M.T., Kruskal J.B., Yam C.S., Raptopoulos V., CT colonography: colonic distention improved by dual positioning but not intravenous glucagon, Eur. Radiol., 2002, 12, 525–530 [Crossref]
  • [6] Rogalla P., Lembcke A., Rückert J.C., Hein E., Bollow M., Rogalla N.E., et al., Spasmolysis at CT colonography: butylscopolamine versus glucagon, Radiology, 2005, 236, 184–188 http://dx.doi.org/10.1148/radiol.2353040007[Crossref]
  • [7] Power N., Pryor M., Martin A., Horrocks J., McLean A., Reznek R., Optimization of scanning parameters for CT colonography, Br. J. Radiol., 2002, 75, 401–408
  • [8] Bruzzi J.F., Moss A.C., Brennan D.D., MacMathuna P., Fenlon H.M., Efficacy of IV Buscopan as a muscle relaxant in CT colonography, Eur. Radiol. 2003, 13, 2264–2270 http://dx.doi.org/10.1007/s00330-003-2012-7[Crossref]
  • [9] Yee J., CT colonography: examination prerequisites, Abdom. Imaging., 2002, 27, 244–252 [Crossref]
  • [10] Tytgat G.N., Hyoscine butylbromide: a review of its use in the treatment of abdominal cramping and pain, Drugs, 2007, 67, 1343–1357 http://dx.doi.org/10.2165/00003495-200767090-00007[WoS][Crossref]
  • [11] Khalif I.L., Quigley E.M., Makarchuk P.A., Golovenko O.V., Podmarenkova L.F., Dzhanaev Y.A., Interactions between symptoms and motor and visceral sensory responses of irritable bowel syndrome patients to spasmolytics (antispasmodics). J Gastrointestin Liver Dis, 2009, 18, 17–22
  • [12] Sirakov N.V., Velkova K.G., Nikolov R.R., Sirakov V.N., Improvement of visualization in computed tomographic colonography after mechanic air insufflations, Folia Medica, 2006, 48, 46–49
  • [13] Gill R.C., Cote K.R., Bowes K.L., Kingma Y.J., Human colonic smooth muscle: electrical and contractile activity in vitro, Gut 1986, 27, 293–299 http://dx.doi.org/10.1136/gut.27.3.293[Crossref]
  • [14] Rami A., Krieglstein J., Muscarinic-receptor antagonist scopolamine rescues hippocampal neurons from death induced by glutamate, Brain Res. 1998, 788, 323–328 http://dx.doi.org/10.1016/S0006-8993(98)00041-9[Crossref]
  • [15] Gómez A., Martos F., Bellido I., Marquez E., Garcia A., Pavia J., et al., Muscarinic receptor subtypes in human and rat colon smooth muscle, Biochem. Pharmacol. 1992, 43, 2413–2419 http://dx.doi.org/10.1016/0006-2952(92)90321-9[Crossref]
  • [16] Preiksaitis H.G., Krysiak P.S., Chrones T., Rajgopal V., Laurier L.G., Pharmacological and molecular characterization of muscarinic receptor subtypes in human esophageal smooth muscle, J. Pharmacol. Exp. Ther. 2000, 295, 879–888
  • [17] Stengel P.W., Yamada M., Wess J., Cohen M.L., M3-receptor knockout mice: muscarinic receptor function in atria, stomach fundus, urinary bladder, and trachea, Am. J. Physiol., 2002, 282, R1443–R1449
  • [18] Matsui M., Motomura D., Fujikawa T., Jiang J., Takahashi S., Manabe T., et al., Mice lacking M2 and M3 muscarinic acetylcholine receptors are devoid of cholinergic smooth muscle contractions but still viable, J. Neurosci. 2002, 22, 10627–10632
  • [19] Wang J., Krysiak P.S., Laurier L.G., Sims S.M., Preiksaitis H.G., Human esophageal smooth muscle cells express muscarinic receptor subtypes M1 through M5, Am. J. Physiol., 2000, 279, G1059–G1069
  • [20] Kerr P.M., Hillier K., Wallis R.M., Garland C.J., Characterization of muscarinic receptors mediating contractions of circular and longitudinal muscle of human isolated colon, Br. J. Pharmacol. 1995, 115, 1518–1524
  • [21] Mansfield K.J., Mitchelson F.J., Moore K.H., Burcher E., Muscarinic receptor subtypes in the human colon: lack of evidence for atypical subtypes, Eur. J. Pharmacol., 2003, 482, 101–109 http://dx.doi.org/10.1016/j.ejphar.2003.10.008[Crossref]
  • [22] Barocelli E., Ballabeni V., Chiavarini M., Caretta A., Molina E., Impicciatore M., Regional differences in motor responsiveness to antimuscarinic drugs in rabbit isolated small and large intestine, Pharmacol. Res. 1995, 31, 43–48 http://dx.doi.org/10.1016/1043-6618(95)80046-8[Crossref]
  • [23] Turiiski V.I., Krustev A.D., Sirakov V.N., Getova D.P., In vivo and in vitro study of the influence of anticholinesterase drug galantamine on motor I evacuative functions of rat gastrointestinal tract, Eur. J. Pharmacol., 2004, 498, 233–239 http://dx.doi.org/10.1016/j.ejphar.2004.07.054[Crossref]
  • [24] Hoting E., Reiss J., Schulz K.H., Papaverineffective in therapy of pruritus of atopic dermatitis, Z. Hautkr., 1990, 65, 725–729
  • [25] Willenbucher R.F., Xie Y.N., Eysselein V.E., Snape Jr. W,R., Mechanisms of cAMP-mediated relaxation of distal circular muscle in rabbit colon, Am. J. Physiol. Gastrointest. Liver Physiol., 1992, 262, G159–G164
  • [26] Lin CS., Lin G., Xin ZC., Lue TF., Expression, distribution and regulation of phosphodiesterase 5, Curr. Pharm., 2006, 12, 3439–3457 http://dx.doi.org/10.2174/138161206778343064
  • [27] Rüegg J.C., Sparrow M.P., Mrwa U., Cyclic-AMP mediated relaxation of chemically skinned fibers of smooth muscle, Pflugers Arch., 1981, 390, 198–201 http://dx.doi.org/10.1007/BF00590207[Crossref]
  • [28] Kusakari Y., Hongo K., Kawai M., Konishi M., Kurihara S., Use of the Ca-shortening curve to estimate the myofilament responsiveness to Ca2+ in tetanized rat ventricular myocytes, J. Physiol. Sci., 2006, 56, 219–226 http://dx.doi.org/10.2170/physiolsci.RP003706
  • [29] Takashi O., Masatoshi H., Hiroshi O., Mechanism of abnormal intestinal motility in inflammatory bowel disease: how smooth muscle contraction is reduced?, Smooth Muscle Res. 2007, 43, 43–54 http://dx.doi.org/10.1540/jsmr.43.43[Crossref]
  • [30] McConalogue K., Furness J.B., Gastrointestinal neurotransmitters, Bailliere’s Clin. Endocrinol. Metab., 1994, 8, 51–76 http://dx.doi.org/10.1016/S0950-351X(05)80226-5[Crossref]
  • [31] Shafik A., Origin of rectal electric waves: further study, Dis. Colon. Rectum., 1999, 42, 1626–1631 http://dx.doi.org/10.1007/BF02236219[Crossref]
  • [32] Langton P., Ward S.M., Carl A., Norell M.A., Sanders K.M., Spontaneous electrical activity of interstitial cells of Cajal isolated from canine proximal colon, Proc. Natl. Acad. Sci. USA, 1989, 86, 7280–7284 http://dx.doi.org/10.1073/pnas.86.18.7280[Crossref]
  • [33] Shafik A., El-Sibai O., Role of the enteric nervous plexus in rectal motile activity: an experimental study, J. Invest. Surg. 2001, 14, 275–281 http://dx.doi.org/10.1080/089419301753170057[Crossref]
  • [34] Tsugeno M., Huang S.M., Pang Y.W., Chowdhury J.U., Tomita T: Effects of phosphodiesterase inhibitors on spontaneus electical activity (slow waves) in the guinea pig gastric muscle, J. Physiol., 1995, 485, 493–502

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11536-010-0065-y
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.