PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2011 | 6 | 1 | 89-97
Article title

Light-dark dependence of electrocardiographic changes during asphyxia and reoxygenation in a rat model

Content
Title variants
Languages of publication
EN
Abstracts
EN
The aim of this study was to evaluate the effect of ventilation on electrocardiographic time intervals as a function of the light-dark (LD) cycle in an in vivo rat model. RR, PQ, QT and QTc intervals were measured in female Wistar rats anaesthetized with both ketamine and xylazine (100 mg/15 mg/kg, i.m., open chest experiments) after adaptation to the LD cycle (12:12h) for 4 weeks. Electrocardiograms (ECG) were recorded before surgical interventions; after tracheotomy, and thoracotomy, and 5 minutes of stabilization with artificial ventilation; 30, 60, 90 and 120 seconds after the onset of apnoea; and after 5, 10, 15, and 20 minutes of artificial reoxygenation. Time intervals in intact animals showed significant LD differences, except in the QT interval. The initial significant (p<0,001) LD differences in PQ interval and loss of dependence on LD cycle in the QT interval were preserved during short-term apnoea-induced asphyxia (30–60 sec) In contrast, long-term asphyxia (90–120 sec) eliminated LD dependence in the PQ interval, but significant LD differences were shown in the QT interval. Apnoea completely abolished LD differences in the RR interval. Reoxygenation restored the PQ and QT intervals to the pre-asphyxic LD differences, but with the RR intervals, the LD differences were eliminated. We have concluded that myocardial vulnerability is dependent on the LD cycle and on changes of pulmonary ventilation.
Keywords
Publisher
Journal
Year
Volume
6
Issue
1
Pages
89-97
Physical description
Dates
published
1 - 2 - 2011
online
16 - 12 - 2010
References
  • [1] Henry R., Casto R., Printz M.P., Diurnal cardiovascular patterns in spontaneously hypertensive and Wistar-Kyoto rats, Hypertension., 1990, 16, 422–428 [Crossref]
  • [2] Portaluppi F., Hermida R.C., Circadian rhythms in cardiac arrhythmias and opportunities for their chronotherapy, Chronobiol., 2007, 59, 9–10
  • [3] Waterhouse J., Witte K., Huser L., Nevill A., Atkinson G., Reilly T., Lemmer B., Sensitivity of heart rate and blood pressure to spontaneous activity in transgenic rats, Biol. Rhythm. Res., 2000, 31, 146–159 http://dx.doi.org/10.1076/0929-1016(200004)31:2;1-U;FT146[Crossref]
  • [4] Zhang B.L., Sannajust F., Diurnal rhythmsn of blood pressure, heart rate and locomotor activity in adult and old male Wistar rats, Physiol. Behav., 2000, 70, 375–380 http://dx.doi.org/10.1016/S0031-9384(00)00276-6[Crossref]
  • [5] Švorc P., Beňačka R., Petrášová D., Effect of systemic hypoxia and reoxygenation on electrical stability of the rat myocardium: Chronophysiological study, Physiol. Res., 2005, 54, 319–325
  • [6] Steinbigler P., Haberl R., Jilge G., Steinbeck G., Circadian variability of late potential analysis in Holter electrocardiograms, PACE., 1999, 22, 1448–1456 [Crossref]
  • [7] Fries R., Konig J., Schonecke O., Schafers H.J., Bohm M., Daily activities and circadian variation of ventricular tachyarrhythmias in patients with implanted defibrilator, Deut. Med. Wochenschr., 2001, 126, 1385–1390 http://dx.doi.org/10.1055/s-2001-18883[Crossref]
  • [8] Taneda K., Aizawa Y., Absence of a morning peak in ventricular tachycardia and fibrillation events in nonischemic heart disease: analysis of therapies by implantable cardioverter defibrillators, PACE., 2001, 24, 1602–1606 [Crossref]
  • [9] Fichter J., Bauer D., Arampatzis S., Fries R., Heisel A., Sybrecht G.W., Sleep-related breathing disorders are associated with ventricular arrhythmias in patients with an implantable cardioverter-defibrilator, Chest., 2002, 122(2), 398–399
  • [10] Mehra R., Benjamin E.J., Shahar E., Gottlieb D.J., Nawabit R., Kirchner H.L., Sahadevan J., Redline S., Sleep Heart Health Study: Association of nocturnal arrhythmias with sleep-disordered breathing: The Sleep Heart Health Study, Am. J. Respir. Crit. Care. Med., 2006, 173(8), 910–916 http://dx.doi.org/10.1164/rccm.200509-1442OC[Crossref]
  • [11] Arias M.A., Sanches A.M., Obstructive sleep apnea and its relationship to cardiac arrhythmias, J. Cardiovasc. Electr., 2007, 18(9), 1006–1014 http://dx.doi.org/10.1111/j.1540-8167.2007.00891.x[Crossref]
  • [12] Patel N.P., Rosen I., Sleep apnea and cardiovascular disease: association, causation and implication, Clin. Pul. Med., 2007, 14(4), 225–231 http://dx.doi.org/10.1097/CPM.0b013e3180cac6d8[Crossref]
  • [13] Daccarett M., Segerson N.M., Hamdan A.L., Hill B., Hamdan M.H., Relation of daytime bradyarrhythmias with high risk features of sleep apnea, Am. J. Cardiol., 2008, 101(8), 1147–1150 [Crossref]
  • [14] Thorman J., Schlepper M., Kramer W., Diurnal changes and reproducibility of corrected sinus node recovery time, Cathet. Cardiovasc. Diagn., 1983, 9, 439–451 http://dx.doi.org/10.1002/ccd.1810090503[Crossref]
  • [15] Mitsuoka T., Ueyama C., Matsumoto Y., Hashiba K., Influences of autonomic changes on the sinus node recovery time in patients with sick sinus syndrome, Jpn. Heart. J., 1990, 31, 645–660 [Crossref]
  • [16] Cinca J., Moya A., Bardaji A., Rius J., Soler J., Circadian variations of electrical properties of the heart. Ann. NY. Acad. Sci., 1990, 601, 222–233 http://dx.doi.org/10.1111/j.1749-6632.1990.tb37303.x[Crossref]
  • [17] Kujaník Š., Sninčák M., Vokál J., Podhradský J., Kovaľ J., Periodicity of arrhythmias in healthy elderly men at the moderate altitude, Physiol. Res., 2000, 49, 285–287
  • [18] Štimmelová J., Švorc P., Bračoková I., ECG parameters changes in the dependence on the alteration of light and dark in female Wistar rats, Physiol. Res., 2002, 51, 43
  • [19] Štimmelová J., Švorc P., Bračoková I., Richtáriková Z., Hypoventilation and amplitude changes of ECG in the dependence on the light/dark cycle in female Wistar rats, Physiol. Res., 2004, 53, 38
  • [20] Graf A.V., Maslova M.V., Maklakova A.S., Sokolova N.A., Kudryashova N.Y., Krushinskaya Y.V., Gencharenko E.N., Neverova M.E., Fidelina O.V., Effect of hypoxia during early organogenesis on cardiac activity and noradrenergic regulation in the postnatal period, Bull. Exp. Biol. Med., 2006, 142(5), 543–555 http://dx.doi.org/10.1007/s10517-006-0412-9[Crossref]
  • [21] Overgaard J., Gesser H., Wang T., Tribute To P.L.Lutz., Cardiac performance and cardiovascular regulation during anoxia/hypoxia in freshwater turtles, J. Exp. Biol., 2007, 15, 1687–1699 http://dx.doi.org/10.1242/jeb.001925[Crossref]
  • [22] Švorc P., Bračoková I., Podlubný I., Relation of ventricular fibrillation threshold to heart rate during normal ventilation and hypoventilation in female Wistar rats: a chronophysiological study, Physiol. Res., 2000, 49, 711–719
  • [23] Bishop B., Silva G., Krasney L., Salloum A., Roberts A., Nakano H., Shucard D., Rifkin D., Farkas G., Circadian rhythms of body temperature and activity levels during 63 h of hypoxia in the rat, Am. J. Physiol., 2000, 279, 1378–1385
  • [24] Jarsky T.M., Stephenson R., Effect of hypoxia and hypercapnia on circadian rhythms in the golden hamster, J. Appl. Physiol., 2000, 89, 2130–2138
  • [25] Kujaník Š., Wilk P., Tomčová D., Changes in the vulnerable period of the rat myocardium during hypoxia, hyperventilation and heart failure, Physiol Bohemoslov., 1984, 33, 470–480
  • [26] Tomori Z., Beňačka R., Tkáčová R., Donič V., Disorders of heart rhythm and ECG changes in experimental apnoeic states, Bratisl. Lek. Listy., 1997, 98, 531–538
  • [27] Tomori Z., Beňačka R., Donič V., Jakuš J., Contribution of upper airway reflexes to apnoea reversal, arousal, and resuscitation, Monaldi. Arch. Chest. Dis., 2000, 55, 398–403
  • [28] Surawicz B., Ventricular fibrillation and dispersion of repolarization, J. Cardiovasc. Electrophysiol., 1997, 8, 1009–1012 http://dx.doi.org/10.1111/j.1540-8167.1997.tb00624.x[Crossref]
  • [29] Han J., Moe G.K., Nonuniform recovery of excitability in ventricular muscle, Circ. Res., 1964, 14, 44–60 [Crossref]
  • [30] Han J., deJalon G. P., Moe G. K., Adrenergic effects on ventricular vulnerability, Circ. Res., 1964, 14, 516–524 [Crossref]
  • [31] Han J., deJalon G. P., Moe G.K., Fibrillation threshold of premature ventricular responses, Circ. Res., 1966, 18, 18–25 [Crossref]
  • [32] Ohoi I., Takeo S., Involvement of superoxide and nitric oxide in the genesis of reperfusion arrhythmias in rats, Eur. J. Pharmacol., 1996, 306, 123–131 http://dx.doi.org/10.1016/0014-2999(96)00231-2[Crossref]
  • [33] Tanno K., Kobayashi Y., Adachi T., Ryu S., Asano T., Obara C., Baba T., Katagiri T., Onset heart rate and microvolt t-wave alternans during atrial pacing, Am. J. Cardiol., 2000, 86, 877–880 http://dx.doi.org/10.1016/S0002-9149(00)01111-5[Crossref]
  • [34] Prudian F., Gantenbein M., Pelissier A.L., Attolini L., Bruguerolle B., Daily rhythms of heart rate temperature and locomor activity are modified by anaesthetics in rats: a telemetric study, NS Arch. Pharmacol., 1997, 355, 774–778 http://dx.doi.org/10.1007/PL00005012[Crossref]
  • [35] Pelissier A.L., Gantenbein M., Prudian F., Bruguerolle B., Influence of general anaesthetics on circadian rhythms of heart rate, body temperature and locomotor activity in rats, Sci. Tech. Anim. Lab., 1998, 23, 91–98
  • [36] Gantenbein M., Attolini L., Bruguerolle B., Nicorandil affect diurnal rhythms of body temperature, heart rate and locomotor activity in rats, Eur. J. Pharmacol., 1998, 346, 125–130 http://dx.doi.org/10.1016/S0014-2999(97)01606-3[Crossref]
  • [37] Hsu W. H., Bellin S.I., Dellmann H. D., Habil V., Hanson C. E., Xylasine-ketamine-induced anaesthesia in rats and its antagonism by yohimbine, Jamma., 1986, 189, 1040–1043
  • [38] Cope D. K., Impastato W. K., Cohen M. V., Downey J. M., Volatile anaesthetics protect the ischemic rabbit myocardium from infarction, Anaesthesiology, 1998, 86, 699–709 http://dx.doi.org/10.1097/00000542-199703000-00023[Crossref]
  • [39] Morita Y., Murakami T., Iwase T., Nagai K., Nawada R., Kouchi I, Akao M., Sasayama S., KATP channels contribute to the cardioprotection of preconditioning independent of anaesthesia in rabbit heart, J. Mol. Cell. Cardiol., 1997, 29, 1267–1276 http://dx.doi.org/10.1006/jmcc.1996.0364[Crossref]
  • [40] Švorc P., Bračoková I., Bačová I., Švorcová E., Acid-base balance and artifitial controlled ventilation in Wistar rats, Chronobiological view, Abstract book from The third International Congress of Applied Chronobiology and Chronomedicine, Akko Israel, 2009, 67
  • [41] Carmeliet E., The slow inward current: nonvoltage-clamp studies. In: The slow invard current and cardiac arrhythmias. (Eds.) E. Anries, R. Stroobandt, Elsevier Science Publishers B. V., 1986, 9–20
  • [42] Amitzur G., Schoels W., Visokovsky A., Lev-ran V., Novikov I., Mueller M., Kraft P., Kaplinsky E., Eldar M., Role of sodium channels in ventricular fibrillation: A study in nonischemic isolated hearts, J. Cardiovasc. Pharmacol., 2000, 36, 785–793 http://dx.doi.org/10.1097/00005344-200012000-00015[Crossref]
  • [43] Gunes Y., Tuncer M., Guntekin U., Akdag S., Gumrukcuoglu H.A, Lacko f diurnal variation of P-wave and QT dispersions in patients with heart failure, Pace., 2008, 31(8), 974–978 [Crossref]
  • [44] Froldi G., Pandolfo L., Chinellato A., Ragazzi E., Caparrotta L., Fassina G., Protection of atrial function in hypoxia by high potassium concentration, Gen. Pharmacol., 1994, 25, 401–407 [Crossref]
  • [45] Cutler M.J., Hamdam A.L., Hamdam M.H., Ramaswamy K., Smith M.L, Sleep apnea: from the nose to the heart, J. Am. Board. Fam. Pract., 2002, 15(2), 128–141
  • [46] Yamashita J., Nomura M., Uehara K., Nakaya Y., Uemura E., Iga A., Sawa Y., Nishikado A., Saito K., Ito S., Influence of sleep apnea on autonomic nervous activity and QT dispersion in patients with essential hypertension and old myocardial infarction, Electrocardiol., 2004, 37(1), 31–40 http://dx.doi.org/10.1016/j.jelectrocard.2003.10.009[Crossref]
  • [47] Bounhoure J.P., Galinier M., Didier A., Leophonte P., Sleep apnea syndromes and cardiovascular disease, Bull. Acad. Natl. Med., 2005, 189(3), 445–459
  • [48] Dunai A., Musci I., Juhasz J., Novak M., Obstructive sleep apnea andcardiovascular disease, Orv. Hetil., 2006, 147(48), 2303–2311
  • [49] Bayram N.A., Diker E., Obstructive sleep apnea syndrome and cardiac arrhythmias, Turk. Kardiyol. Dern. Ars., 2008, 36(1), 44–50
  • [50] Grešová S., Tomori Z., Kurpas M., Marossy A., Vrbenska A., Kundrik M., Donic V., Blood pressure increase detected by ambulatory monitoring cerrelates with hypoxemia reflecting sleep apnea severity, Cent. Eur. J. Med., 2009, 4, 222–232 http://dx.doi.org/10.2478/s11536-009-0011-z[Crossref]
  • [51] Mortola J.P., Hypoxia and circadian patterns, Respir. Physiol. Neurobiol., 2007, 158(2–3), 274–279 http://dx.doi.org/10.1016/j.resp.2007.02.005[Crossref]
  • [52] Nishimura M., Tanaka H., Homma N., Matsuzawa Y., Ionic mechanisms of the depression of automaticity and conduction in the rabbit atrioventricular node caused by hypoxia or metabolic inhibition and protective action of glucose and valine, Amer. J. Cardiol., 1989, 64, 24J–28J http://dx.doi.org/10.1016/0002-9149(89)91193-4[Crossref]
  • [53] Sawanobori T., Adaniya H., Yukisada H., Hiraoka M., Role for ATP-sensitive K+ channel in the development of A-V block during hypoxia, J. Mol. Cell. Cardiol., 1995, 27, 647–657 http://dx.doi.org/10.1016/S0022-2828(08)80057-0[Crossref]
  • [54] Xu J., Wang L., Hurt C.M., Pelleg A., Endogenous adenosine does not activate ATP-sensitive pottasium channels in the hypoxic guinea pig ventricle in vivo, Circulation., 1994, 89, 1209–1216 [Crossref]
  • [55] Leone R., Jr., Merrill G. F., Inhibition of adenosine deaminase and administration of adenosine increase hypoxia induced ventricular ectopy, Basic. Res. Cardiol., 1995, 90, 234–239 http://dx.doi.org/10.1007/BF00805666[Crossref]
  • [56] Perchenet L., Kreher P., Mechanical and electrophysiological effects of preconditioning in isolated ischemic/reperfused rat heart, J. Cardiovasc. Pharmacol., 1995, 26, 831–840 http://dx.doi.org/10.1097/00005344-199511000-00021[Crossref]
  • [57] Bugge E., Gamst T.M., Hegstad A.C., Andreasen T., Ytrehus K., Mepacrine protects the isolated rat heart during hypoxia and reoxygenation - but not by inhibition of phospholipase A2, Basic. Res. Cardiol., 1997, 92, 17–24
  • [58] Griffiths E.J., Ocampo C.J., Savage J.S., Stern M.D., Silverman H.S., Protective effects of low and high doses of cyclosporin A against reoxygenation injury in isolated rat cardiomyocytes are associated with differrential effects on mitochondrial calcium levels, Cell. Calcium., 2000, 27, 87–95 http://dx.doi.org/10.1054/ceca.1999.0094[Crossref]
  • [59] Mukai M., Terada H., Sugiyama S., Satoh H., Hayashi H., Effects of a selective inhibitor of Na+/Ca2+ exchange, KB-R7943, on reoxygenation - induced injuries in Guinea pig papillary muscles, J. Cardiovasc. Pharmacol., 2000, 35, 121–128 http://dx.doi.org/10.1097/00005344-200001000-00016[Crossref]
  • [60] Lubbe W.F., Bricknell O.L., Marzagao C., Ventricular fibrillation threshold and vulnerable period in the isolated perfused rat heart, Cardiovasc. Res., 1975, 9, 613–620 http://dx.doi.org/10.1093/cvr/9.5.613[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11536-010-0038-1
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.