Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2010 | 5 | 5 | 527-534

Article title

Early diagnosis of acute kidney injury


Title variants

Languages of publication



There is a considerable lack of data concerning the diagnostic testing for kidney damage after surgical procedures. In this situation the most important variables should be examined with respect to their clinical informative value, the costs associated with their analysis, and their potential use in routine diagnostic testing. Forty patients in the surgical intensive care unit (ICU) with acute kidney injury (AKI) that developed during their stay of 13–18 (median, 16) days in the ICU were examined daily during their entire ICU admission. The bulk of the laboratory research consisted of the measurement of creatinine, urea, and sodium, as well as clearances rates and diuresis. Various tests for diagnosing regional renal damage (enzymes and proteins) were also carried out. The included photometry, nephelometric analysis, and ELISA (enzyme-linked immunosorbent assay). Five days before an AKI became evident, pathologic levels of urinary α1-microglobulin (tubular parameter) could already be confirmed. Serum creatinine values or creatinine clearance indicated the presence of disease only 1 day before the AKI was seen. Our results show that determination of α1-microglobulin and immunoglobulin G (glomerular parameter) levels, in addition to the level of urea in serum, be recommended for patients in surgical intensive care units who are at risk for AKI. Use of these procedures can achieve early recognition and sufficiently precise localization of renal damage.










Physical description


1 - 10 - 2010
20 - 8 - 2010


  • Department of Anesthesiology, Intensive Care Medicine, Emergency medicine and pain therapy, Hospital Wittlich, Wittlich, Germany
  • Staff Anesthesiologist, Department of Anesthesiology and Intensive Care Medicine, Justus-Liebig-University Giessen, Giessen, Germany
  • Staff Anesthesiologist, Department of Anesthesiology and Intensive Care Medicine, Justus-Liebig-University Giessen, Giessen, Germany
  • Staff Anesthesiologist, Department of Anesthesiology and Intensive Care Medicine, Justus-Liebig-University Giessen, Giessen, Germany


  • [1] Byrick R.J., Rose D.K.: Pathophysiology and prevention of acute renal failure: The role of the anaesthesist, Can. J. Anaesth. 1990, 37,457–467 http://dx.doi.org/10.1007/BF03005627[Crossref]
  • [2] Sural S., Sharma R.K., Singhal M., Sharma A.P., Kher V., Arora P., Gupta A., Gulati S.: Etiology, prognosis, and outcome of post-operative acute renal failure, Ren. Fail. 2000, 1,87–97
  • [3] Pickering J.W., Endre Z.H.: Secondary prevention of acute kidney injury, Curr. Opin. Crit. Care 2009, 15(6),488–497 http://dx.doi.org/10.1097/MCC.0b013e328332f66f[Crossref]
  • [4] Bellomo R., Ronco C., Kellum J.A., Mehta R.L., Palevsky P., Acute Dialysis Quality Initiative workgroup. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group, Crit. Care 2004, 8(4), 204–212 http://dx.doi.org/10.1186/cc2872[Crossref]
  • [5] Kellum J.A., Acute kidney injury, Crit. Care Med. 2008, 36(4),141–145 http://dx.doi.org/10.1097/CCM.0b013e318168c4a4[Crossref]
  • [6] Kellen M., Aronson S., Roizen M., Barnard J., Thisted R., Predictive and Diagnostic Tests of Renal Failure: A Review, Anesth. Analg. 1994, 78,134–142 http://dx.doi.org/10.1213/00000539-199401000-00022[Crossref]
  • [7] Dati F., Lammers M., Immunochemical Methods for Determination of Urinary Proteins in Kidney Disease, J. Fed. Clin. Chem. 1989, 1,68–77
  • [8] Simane Z.J., N-Acetyl-b-D-Glucosaminidase; in Jung K, Mattenheimer H, Burchardt U (eds), Urinary Enzymes in Clinical and Experimental Medicine, Berlin, Springer, 1992, pp118–124
  • [9] Scherberich J.E., Aminopeptidase A (Angiotensinase A), in Jung K, Mattenheimer H, Burchardt U (eds), Urinary Enzymes in Clinincal and Experimental Medicine. Berlin, Springer, 1992, pp 116–112
  • [10] Szczech L.A., The development of urinary biomarkers for kidney disease is the search for our renal troponin, J Am. Soc. Nephrol. 2009, 20(8),1656–1657 http://dx.doi.org/10.1681/ASN.2009050525[Crossref][WoS]
  • [11] Dixon B.S., Anderson R.J., Nonoliguric acute renal failure, Am. J. Kidney Dis. 1985, 6,71–80 [Crossref]
  • [12] Hartl W.H., Jauch K.W., Post-aggression metabolism: attempt at a status determination, Infusionsther. Transfusionsmed. 1994, 2,30–40
  • [13] Lynn K.L., Marshall R.D., Excretion of Tamm-Horsfall glycoprotein in renal disease, Clin. Nephrol. 1984, 22,253–257
  • [14] Itoh Y., Enomoto H., Takagi K., Kawai, T., Clinical usefulness of serum alpha 1-microglobulin as a sensitive indicator for renal insufficiency, Nephron 1983, 33,69–70 http://dx.doi.org/10.1159/000182911
  • [15] Wedeen R.P., Udasin I., Fiedler N., Urinary biomarkers as indicators of renal disease, Ren. Fail. 1999, 21,241–249 http://dx.doi.org/10.3109/08860229909085086[Crossref]
  • [16] Wolf G., Thaiss F., Scherberich J.E., Schoeppe W., Stahl R.A., Glomerular angiotensinase A in the rat: increase of enzyme activity following renal ablation, Kidney Int. 1990, 38,862–868 http://dx.doi.org/10.1038/ki.1990.283[Crossref]
  • [17] Hotta O., Sugai H., Kitamura H., Yusa N., Taguma Y., Predictive value of urinary microcholesterol (mCHO) levels in patients with progressive glomerular disease. Kidney Int. 2004, 66,2374–2381 http://dx.doi.org/10.1111/j.1523-1755.2004.66026.x[Crossref]
  • [18] Higuchi H., Adachi Y., Renal function in surgical patients after administration of low-flow sevoflurane and amikacin, J. Anesth. 2002, 16,17–22 http://dx.doi.org/10.1007/s540-002-8089-9[Crossref]
  • [19] Scherberich J.E., Wolf G., Albers C., Nowack A., Stuckhardt C., Schoeppe W., Glomerular and tubular membrane antigens reflecting cellular adaptation in human renal failure, Kidney Int. Suppl. 1989, 27,38–51
  • [20] Mueller P.W., MacNeil M.L., Steinberg K.K., Stabilization of alanine aminopeptidase, gammaglutamyltransferase and N-acetyl-beta-D-glucosaminidase in normal urine, Arch. Environ. Contam. Toxicol. 1986, 15,343–358 http://dx.doi.org/10.1007/BF01066400[Crossref]
  • [21] Mattenheimer H., Frolke W., Grotsch H., Mahrun D., Simane Z.J., Recommendation for the measurement of “alanine aminopeptidase” in urine, J. Clin. Chem. Clin. Biochem. 1988, 26,635–644
  • [22] Dehne M.G., Mühling J., Papke G., Nopens H., Kuntzsch U., Hempelmann G., Unrecognized renal damage in critically ill patients, Ren. Fail. 1999, 21,695–706 http://dx.doi.org/10.3109/08860229909094163[Crossref]
  • [23] Teppo A. M., von Willebrand E., Honkanen E., Ahonen J., Gronhagen-Riska C., Soluble intercellular adhesion molecule-1 (sICAM-1) after kidney transplantation: the origin and role of urinary sICAM-1? Transplantation 2001, 71,1113–1119 http://dx.doi.org/10.1097/00007890-200104270-00018[Crossref]
  • [24] Gauer S., Yao J., Schoecklmann H.O., Sterzel R.B., Adhesion molecules in the glomerular mesangium, Kidney Int. 1997, 51,1447–1453 http://dx.doi.org/10.1038/ki.1997.198[Crossref]
  • [25] Gobé Glenda C., Willgoss D., Hogg N., Schoch E., Endre Z., Cell survival or death in renal tubular epithelium after ischemia-reperfusion injury, Kidney Int. 1999, 56,1299–1304 http://dx.doi.org/10.1046/j.1523-1755.1999.00701.x[Crossref]
  • [26] Rothlein R., Kennedy C., Czajkowski M., Barton R.W., Generation and characterization of an antiidiotypic antibody specific for intercellular adhesion molecule-1, Int. Arch. Allergy Immunol. 1993, 100,121–127 http://dx.doi.org/10.1159/000236398[Crossref]
  • [27] Bechtel U., Scheuer R., Landgraf R., Konig A., Feucht H.E., Assessment of soluble adhesion molecules (sICAM-1, sVCAM-1, sELAM-1) and complement cleavage products (sC4d, sC5b-9) in urine. Clinical monitoring of renal allograft recipients, Transplantation 1994, 58,905–911 http://dx.doi.org/10.1097/00007890-199410270-00008[Crossref]
  • [28] Gearing A.J.H., Hemingway I., Pigott R., Hughes J., Rees A.J., Cashman S.J., Soluble forms of vascular adhesion molecules, E-selectin, ICAM-1, and VCAM-1: Pathological significance, Ann. N. Y. Acad. Sci. 1992, 667,324–331 http://dx.doi.org/10.1111/j.1749-6632.1992.tb51633.x[Crossref]
  • [29] Bevilacqua M.P., Stengelin S., Gimbrone M.A. Jr, Seed B., Endothelial Leukocyte Adhesion Molecule 1: An Inducible Receptor for Neutrophils Related to Complement Regulatory Proteins and Lectins, Science 1989, 243,1160–1164 http://dx.doi.org/10.1126/science.2466335[Crossref]
  • [30] Kelly K. J., Williams W.W., Colvin R.B., Meehan S.M., Springer T.A., Guiterrez-Ramos J.C., Bonventre J.V., Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury, J. Clin. Invest. 1996, 97,1056–1062 http://dx.doi.org/10.1172/JCI118498[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.