Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2010 | 5 | 1 | 123-131

Article title

In-vivo effects of nociceptin and its structural analogue [Orn9] nociceptin on the antioxidant status of rat blood and liver after carrageenan-induced paw inflammation


Title variants

Languages of publication



The production of reactive oxygen species (ROS) in cells is well balanced with their elimination by the antioxidant defence system. This balance is essential for maintenance of physiological conditions, and its disturbance (oxidative stress) has been suggested as a potential pathogenic mechanism in a variety of diseases, accompanied by inflammation. In this study, the in-vivo effects of nociceptin (N/OFQ(1–13)NH2) and its structure analogue [Orn9]N/OFQ(1–13)NH2 were studied on markers of oxidative stress in erythrocytes and liver of rats 4 hours after subplantar administration of carrageenan (CG) (1%, 100 µl) in the right hind paw. A considerable inflammatory oedema of the paw was observed. CG did not change blood haemoglobin content, hematocrit value, glutathione level and antioxidant enzyme activities in the erythrocytes, but there was an increase in lipid peroxidation. In liver, CG-induced imbalance was manifested by an increase in lipid peroxidation and a decrease in glutathione level. Both peptides (20 µg, i.p.), when administered alone, had no effect on all parameters tested. When either [Orn9]N/OFQ(1–13)NH2 or N/OFQ(1–13)NH2 was injected simultaneously with CG or 15 minutes before it, they did not affect the CG-induced changes in the antioxidant status of the erythrocytes and liver. Our results suggest that the peptides tested did not play a role in the free radical processes that accompany CG-induced paw inflammation.










Physical description


1 - 2 - 2010
29 - 1 - 2010


  • Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G.Bonchev St., 1113, Sofia, Bulgaria
  • Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G.Bonchev St., 1113, Sofia, Bulgaria
  • Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G.Bonchev St., 1113, Sofia, Bulgaria
  • Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G.Bonchev St., 1113, Sofia, Bulgaria
  • Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G.Bonchev St., 1113, Sofia, Bulgaria
  • Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G.Bonchev St., 1113, Sofia, Bulgaria
  • Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G.Bonchev St., 1113, Sofia, Bulgaria


  • [1] Calo G., Guerrini R., Rizzi A., Salvadori S., Regoli D., Pharmacology of nociceptin and its receptor: a novel therapeutic target (review), Brain J. Pharmacol., 2000, 129, 1261–1283 http://dx.doi.org/10.1038/sj.bjp.0703219[Crossref]
  • [2] Chiou L.C., Liao Y.Y., Fan P.C., Kuo P.H., Wang C.H., Riemer C., Prinssen E.P., Nociceptin/orphanin FQ peptide receptors: pharmacology and clinical implications, Curr. Drug Targets, 2007, 8(1), 117–135 http://dx.doi.org/10.2174/138945007779315605[Crossref]
  • [3] Wei Y., Ouyang D., Liu Y., Chang Z., Tang J., Ding J., Peripheral tissue distribution of orphanin FQ precusor mRNA in stroke-prone spontaneously hypertensive rats, Clin. Med. Sci. J., 1999, 14(2), 67–70
  • [4] Boom A., Mollereau C., Meunier J.C., Vassart G., Parmentier M., Vanderhaeghen J.J., Schiffmann S.N., Distribution of the nociceptin and nocistatin precursor transcript in the mouse central nervous system, Neuroscience, 1999, 91(3), 991–1007 http://dx.doi.org/10.1016/S0306-4522(98)00683-6[Crossref]
  • [5] Doggrell S.A., Cardiovascular and renal effects of nociceptin/orphanin FQ: a new mediator to target? Curr. Opin. Investig. Drugs, 2007, 8(9), 742–749
  • [6] Fiset M.E., Gilbert C., Poubelle P.E., Pouliot M., Human neutrophils as a source of nociceptin: a novel link between pain and inflammation, Biochemistry, 2003, 42(35), 10498–10505 http://dx.doi.org/10.1021/bi0300635[Crossref]
  • [7] Williams J.P., Thompson J.P., Mc Donald J., Barnes T.A., Cote T., Rowbotham D.J., Lambert D.G., Human peripheral blood mononuclear cells express nociceptin/orphanin FQ, but not mu, delta, or kappa opioid receptors, Anesth. Analg., 2007, 105(4), 998–1005 http://dx.doi.org/10.1213/01.ane.0000278865.11991.9d[Crossref]
  • [8] Williams J.P., Thompson J.P., Rowbotham D.L., Lambert D.G., Human peripheral blood mononuclear cells produce pre-pro-nociceptin/orphanin FQ mRNA, Anesth. Analg., 2008, 106(3), 865–866 http://dx.doi.org/10.1213/ane.0b013e3181617646[Crossref]
  • [9] Williams J.P., Thompson J.P., Young S.P., Gold S.J., McDonald J., Rowbotham D.J., Lambert D.J., Nociceptin and urotensin-II concentrations in critically ill patients with sepsis, Br. J. Anaesth., 2008, 100(6), 810–814 http://dx.doi.org/10.1093/bja/aen093[Crossref]
  • [10] Hantos M.B., Szalay F., Lakatos P.L., Hegedus D., Firneisz G., Reiczigel J., et al., Elevated plasma nociceptin level in patients with Wilson disease, Brain Res. Bull., 2002, 58, 311–313 http://dx.doi.org/10.1016/S0361-9230(02)00795-5[Crossref]
  • [11] Ko M.H., Kim Y.H., Woo R.S., Kim K.W., Quantitive analysis of nociceptin in blood of patients with acute and chronic pain, Neuroreport, 2002, 13, 1361–1363
  • [12] Szalay F., Hantos M.B., Horvath A., Lakatos P.L., Folhoffer A., Dunkel K., et al., Increased nociceptin/orphanin FQ plasma levels in hepatocellular carcinoma, World J. Gastroenterol., 2004, 10(1), 42–45
  • [13] Horvath A., Folhoffer A., Lakatos P.L., Halász J., Illyés G., Schaff Z., et al., Rising plasma nociceptin level during development of HCC: A case report, World J. Gastroenterol., 2004, 10(1), 152–154
  • [14] Mabuchi T., Matsumura S., Okuda-Ashitaka E., Kitano T., Kojima H., Nagano T., et al., Attenuation of neuropathic pain by the nociceptin/orphanin FQ antagonist JTC-801 is mediated by inhibition of nitric oxide production, Eur. J. Neurosci., 2003, 17(7), 1384–1392 http://dx.doi.org/10.1046/j.1460-9568.2003.02575.x[Crossref]
  • [15] Kulkarni M., Armstead W.M., Superoxide generation links nociceptin/orphanin FQ (NOC/oFQ) release to impaired N-methyl-D-aspartate cerebrovasodilation after brain injury, Stroke, 2000, 31, 1990–1996 [Crossref]
  • [16] Armstead W.M., Role of altered cyclooxygenase metabolism in impaired cerebrovasodilation to nociceptin/orphanin FQ following brain injury, Brain Res. Bull., 2000, 53, 807–812 http://dx.doi.org/10.1016/S0361-9230(00)00417-2[Crossref]
  • [17] Armstead W.M., NOC/oFQ PKC-dependent superoxide generation contributes to hypoxicischemic impairment of NMDA cerebrovasodilation, Am. J. Physiol. Heart Circ. Physiol., 2000, 279, H2678–H2684
  • [18] Chen Y., Sommer C., Nociceptin and its receptor in rat dorsal root ganglion neurons in neuropathic and inflammatory pain models: implications on pain processing, J. Peripher. Nerv. Syst., 2006, 11(3), 232–240 http://dx.doi.org/10.1111/j.1529-8027.2006.0093.x[Crossref]
  • [19] Rosenberger J., Petrovics G., Buzas B., Oxidative stress induces proorphanin FQ and proenkephalin gene expression in astrocytes through p38- and ERK-MAP kinases and NF-kappaB, J. Neurochem., 2001, 79(1), 35–44 http://dx.doi.org/10.1046/j.1471-4159.2001.00520.x[Crossref]
  • [20] Naydenova E.D., Zhivkova V., Zamfirova R., Vezenkov L.T., Dobrinova Y.G, Mateeva P.I., Synthesis and biological activity of nociceptin/orphanin FQ(1–13)NH2 analogues modified in 9 and/or 13 position, Bioorg. & Med. Chem. Lett., 2006, 16, 4071–4074 http://dx.doi.org/10.1016/j.bmcl.2006.04.086[Crossref]
  • [21] Helyes Z, Nemeth J, Pinter E, Szolesanyi J. (1997) Inhibition by N/OFQ of neurogenic inflammation and the release of SP and CGRP from sensory nerve terminals. Br. J. Pharmacol., 121, 613–615 http://dx.doi.org/10.1038/sj.bjp.0701209[Crossref]
  • [22] Lowry O.H., Rosenbrough N.J., Farr A.L., Randal R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, 193, 265–278
  • [23] Gilbert N.S., Strump D.D., Roth E.F., A method to correct errors caused by generation of interfering compounds during erythrocyte lipid peroxidation, Anal. Biochem., 1984, 137, 282–286 http://dx.doi.org/10.1016/0003-2697(84)90086-1[Crossref]
  • [24] Hunter F., Gebinski J., Hoffstein.P, Weinstein J., Scott A., Swelling and lysis of rat liver mitochondria by ferrous ions, J. Biol. Chem., 1963, 238, 828–835
  • [25] Tietze F., Enzymatic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues, Anal. Biochem., 1969, 27, 502–522 http://dx.doi.org/10.1016/0003-2697(69)90064-5[Crossref]
  • [26] Gunzler W.A., Vergin H., Muller I., Flohe L., Glutathion peroxidase. VI. Die reaction der glutathion peroxidase mit Verschieden hydroperoxiden, Hoppe-Seyler’s Z Physiol. Chem., 1972, 353, 1001–1004
  • [27] Pinto R.E., Bartly W., The effect of age and sex on glutathione reductase and glutathione peroxidase activities and on aerobic glutathione oxidation in rat liver homogenates, Biochem. J., 1969, 112, 109–115
  • [28] Cartier P., Leroux J.P., Marchand J.Cl., Techniques de dosage des enzymes glycocytiques tissulaires, Ann. Biol. Clin., 1967, 25, 109–136
  • [29] Beauchamp C., Fridovich I., Superoxide dismutase: improved assays and assay applicable to acrylamide gels, Anal. Biochem., 1971, 44, 276–287 http://dx.doi.org/10.1016/0003-2697(71)90370-8[Crossref]
  • [30] Aebi H., Katalase, In: Bergmeyer H.U. (Ed.), Methoden der Enzymatischen Analyze, Academie Press, Berlin, 1970
  • [31] Zamfirova R, Tzvetanova E, Alexandrova A, Petrov L, Mateeva P, Pavlova A, Kirkova M, Todorov S., In-vivo effects of nociceptin(1–13)NH2 and its structural analogue [Orn9]nociceptin(1–13)NH2 on carrageenan-induced inflammation: rat-paw oedema and antioxidant status, Cent. Eur. J. Biol., 2009, 4(2), 170–178 http://dx.doi.org/10.2478/s11535-009-0006-4[Crossref]
  • [32] Muntane J., Puig-Parellada P., Fernandez Y., Mitjavila S., Mitjavila M.T., Antioxidant defenses and its modulation by iron in carrageenan-induced inflammation in rats, Clin. Chim. Acta, 1993, 214(2), 185–193 http://dx.doi.org/10.1016/0009-8981(93)90110-P[Crossref]
  • [33] Cuzzocrea S., Mazzon E., Dugo L., Serraino I., Ciccolo A., Centorrino Tet al., Protective effects of n-acetylcysteine on lung injury and red blood cell modification induced by carrageenan in the rat, FASEB J., 2001, 15, 1187–1200 http://dx.doi.org/10.1096/fj.00-0526hyp[Crossref]
  • [34] Bilici D., Akpinar E., Kiziltunc A., Protective effect of melatonin in carrageenan-induced acute local inflammation, Pharmacol. Res., 2002, 46(2), 133–139 http://dx.doi.org/10.1016/S1043-6618(02)00089-0[Crossref]
  • [35] Chou T.C., Anti-inflammatory and analgesic effects of paeonol in carrageenan-evoked thermal hyperalgesia, Br. J. Pharmacol., 2003, 139, 1146–1152 http://dx.doi.org/10.1038/sj.bjp.0705360[Crossref]
  • [36] Rossi A., Serraino I., Dugo P., Di Paola R., Mondello L., Genovese T., et al., Protective effects of anthocyanins from blackberry in a rat model of acute lung inflammation, Free Radic. Res., 2003, 37(8), 891–900 http://dx.doi.org/10.1080/1071576031000112690[Crossref]
  • [37] Lu T.C., Ko Y.Z., Huang H.W., Hung Y.C., Lin Y.C., Peng W.H., Analgesic and anti-inflammatory activities of aqueous extract from Glycine tomentella root in mice, J. Ethnopharmacol., 2007, 113(1), 142–148 http://dx.doi.org/10.1016/j.jep.2007.05.024[Crossref]
  • [38] Rubbo H., Radi R., Trujillo M., Telleri R., Kalyanaraman B., Barnes S., et al., Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives, J. Biol. Chem., 1994, 269, 26066–26075
  • [39] Tracey W.R., Nakane M., Kuk J., Budzik G., Klinghofer V., Harris R., Carter G., The nitric oxide synthase inhibitor, L-NG-monomethylarginine, reduces carrageenan-induced pleurisy in the rat, J. Pharmacol. Exp. Ther., 1995, 273, 1295–1299
  • [40] Salvemini D., Wang Z.Q., Wyatt P., Bourdon D.M., Marino M.H., Manning P.T., Currie M.G., Nitric oxide: a key mediator in the early and late phase of carrageenan-induced rat paw inflammation, Br. J. Pharmacol., 1996, 118, 829–838
  • [41] Radi R., Beckman J.S., Bush K.M., Freeman B.A., Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide, Arch. Biochem. Biophys., 1991, 288, 481–487 http://dx.doi.org/10.1016/0003-9861(91)90224-7[Crossref]
  • [42] Peskar B.M, Trautmann M., Nowak P., Peskar, B.A., Release of 15-hydroxy-5,8,11,13-icosatetraenoic acid and cysteinyl-leukotrienes in carrageenaninduced inflammation: effect of non-steroidal antiinflammatory drugs, Agents Actions, 1991, 33(3–4), 240–246 http://dx.doi.org/10.1007/BF01986569[Crossref]
  • [43] Da Motta J.I., Cunha F.Q., Vargaftig B.B., Ferreira S.H., Drug modulation of antigen-induced paw oedema in guinea-pigs: effects of lipopolysaccharide, tumour necrosis factor and leucocyte depletion, Br. J. Pharmacol., 1994, 112, 111–116
  • [44] Wei X.Q., Charles I.G., Smith A., Ure J., Feng G.J., Huang F.P., et al., Altered immune responses in mice lacking inducible nitric oxide synthase, Nature (London), 1995, 375, 408–411 http://dx.doi.org/10.1038/375408a0[Crossref]
  • [45] Salvemini D., Wang Z.Q., Bourdon D.M., Stern M.K., Currie M.G., Manning P.T., Evidence of peroxynitrite involvement in the carrageenan-induced rat paw edema, Eur. J. Pharmacol., 1996, 303, 217–220 http://dx.doi.org/10.1016/0014-2999(96)00140-9[Crossref]
  • [46] Cuzzocrea S., Zingarelli B., Gilard E., Hake P., Salzman A.L., Szabo’ C., Protective effect of melatonin in carrageenan-induced models of local inflammation, J. Pineal Res., 1997, 23, 106–116 http://dx.doi.org/10.1111/j.1600-079X.1997.tb00342.x[Crossref]
  • [47] Cuzzocrea S., Caputi A.P., Zingarelli B., Peroxynitrite-mediated DNA strand breakage activates poly (ADP-ribose) synthetase and causes cellular energy depletion in carrageenan-induced pleurisy, Immunology, 1998, 93, 96–101 http://dx.doi.org/10.1046/j.1365-2567.1998.00409.x[Crossref]
  • [48] Oyanagui Y., Inflammation and superoxide production by macrophages, Agents Action Suppl., 1980, 7, 174–179
  • [49] Salvemini D., Mazzon E., Dugo L., Riley D.P., Serraino I., Caputi A.P., Cuzzocrea S., Pharmacological manipulation of the inflammatory cascade by the superoxide dismutase mimetic, M40403, Br. J. Pharmacol., 2001, 132(4), 815–827 http://dx.doi.org/10.1038/sj.bjp.0703841[Crossref]
  • [50] Khattab M.M., TEMPOL, a membrane-permeable radical scavenger, attenuates peroxynitriteand superoxide anion-enhanced carrageenan-induced paw edema and hyperalgesia: a key role for superoxide anion, Eur. J. Pharmacol., 2006, 548(1–3), 167–173 http://dx.doi.org/10.1016/j.ejphar.2006.08.007[Crossref]
  • [51] Cuzzocrea S., Zingarelli B., Gilard E., Hake P., Salzman A.L., Szabo’ C., Protective effects of 3-aminobenzamide, an inhibitor of poly (ADPribose) synthase in carrageenan-induced models of local inflammation, Eur. J. Pharmacol., 1998, 342, 67–76 http://dx.doi.org/10.1016/S0014-2999(97)01417-9[Crossref]
  • [52] Cuzzocrea S., Costantino G., Mazzson E., Zingarelli B., De Sarro A., Caputi AP., Protective effects of Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP), a superoxide dismutase mimetic, in paw oedema induced by carrageenan in the rat, Biochem. Pharmacol., 1999, 58(1), 171–176 http://dx.doi.org/10.1016/S0006-2952(99)00067-2[Crossref]
  • [53] Cuzzocrea S., Mazzon E., Sautebin L., Dugo L., Serraino I., De Sarro A., Caputi A.P., Protective effects of Celecoxib on lung injury and red blood cells modification induced by carrageenan in the rat, Biochem. Pharmacol., 2002, 63(4), 785–795 http://dx.doi.org/10.1016/S0006-2952(01)00908-X[Crossref]
  • [54] Wu Y., Zhou C., Li X., Song L., Wu X., Lin W., et al., Evaluation of antiinflammatory activity of the total flavonoids of Laggera pterodonta on acute and chronic inflammation models, Phytother. Res., 2006, 20(7), 585–590 http://dx.doi.org/10.1002/ptr.1918[Crossref]
  • [55] Nardi G.M., Siqueira Junior J.M., Delle Monache F., Pizzolatti M.G., Ckless K., Ribeiro-do-Valle R.M., Antioxidant and anti-inflammatory effects of products from Croton celtidifolius Bailon on carrageenan-induced pleurisy in rats, Phytomedicine, 2007, 14(2–3), 115–122 http://dx.doi.org/10.1016/j.phymed.2006.03.002[Crossref]
  • [56] Halici Z., Dengiz G.O., Odabasoglu F., Suleyman H., Cadirci E., Halici M., Amiodarone has antiinflammatory and anti-oxidative properties: an experimental study in rats with carrageenan-induced paw edema, Eur. J. Pharmacol., 2007, 566(1–3), 215–221 http://dx.doi.org/10.1016/j.ejphar.2007.03.046[Crossref]
  • [57] Leduc C., Gentili M.E., Estebe J.P., Le Corre P., Moulinoux J.P., Ecoffey C., The effect of local anesthetics and amitriptyline on peroxidation in vivo in an inflammatory rat model: preliminary reports, Anesth. Analg., 2002, 95(4), 992–996 http://dx.doi.org/10.1097/00000539-200210000-00037[Crossref]
  • [58] Dhuley J.N., Raman P.H., Mujumdar A.M., Naik S.R., Inhibition of lipid peroxidation by piperine during experimental inflammation in rats, Indian J. Exp. Biol., 1993, 31(5), 443–445
  • [59] Trombella S., Vergura R., Falzarano S., Guerrini R., Calo G., Spisani S., Nociceptin/orphanin FQ stimulates human monocyte chemotaxis via NOP receptor activation, Peptides, 2005, 26, 1497–1502 http://dx.doi.org/10.1016/j.peptides.2005.03.015[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.