Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2009 | 4 | 4 | 506-511

Article title

Changes in antioxidative parameters in the kidney of rats subchronically intoxicated with chlorfenvinphos - an organophosphate insecticide

Content

Title variants

Languages of publication

EN

Abstracts

EN
Chlorfenvinphos is an organophosphate insecticide, posing a risk to those who are professionally involved in its production and use in agriculture, as well as to the general population. Organophosphates (OPs) are the class of insecticides, whose primary target is acetylcholinesterase (AChE) that hydrolyzes acetylcholine, a major neurotransmitter at the central and peripheral neuronal synapses. Moreover, many authors postulate that these compounds, both in acute and chronic intoxication, change the activities of antioxidative enzymes, thus leading to the enhancement of lipid peroxidation in many tissues. In the current study, animals received once a day, intragastrically with a stomach tube, 0.1ml/100g of olive oil (control groups) and oil solution of chlorfenvinphos at a dose of 0.02LD50 (0.3 mg/kg b. w.) - the experimental groups. The animals were sacrificed on day 14 or on day 28 of exposure. In the kidneys of rats, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) as well as reduced glutathione level (GSH) were determined. Chlorfenvinphos administration resulted in increased activities of antioxidative enzymes in the kidney of rats. Renal activities of SOD, GPx and GR were more pronounced on day 28 of chlorfenvinphos exposure than on day 14. The kidney reduced glutathione level (GSH) did not change in comparison to the control level. The current experimental findings indicate that subchronic administration of chlorfenvinphos leads to an adaptive response in the kidney of rats and this response is mostly due to reduced glutathione level and glutathione metabolism.

Publisher

Journal

Year

Volume

4

Issue

4

Pages

506-511

Physical description

Dates

published
1 - 12 - 2009
online
3 - 10 - 2009

Contributors

  • Department of Toxicology, Medical University of Bialystok, 15-222, Białystok, Poland

References

  • [1] Lodovici M., Casalini C., Briani, C., Dolara P. Oxidative damage in rats treated with pesticide mixtures. Toxicology, 1997, 117, 55–61 http://dx.doi.org/10.1016/S0300-483X(96)03553-6[Crossref]
  • [2] Toxicological profile for chlorfenvinphos, US Department of Heath and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, 1997
  • [3] Savolainen K. Understanding the toxic action of organophosphates. Handbook of pesticide toxicology. Academic Press USA, II Ed., 2001, 1013–1043
  • [4] Lotti M. Clinical toxicology of anticholinesterase agents in humans. in Handbook of Pesticide Toxicology, Academic Press, USA, Ed. II, 2, 2001, 1043–1086
  • [5] Vidayasagar J., Karunakar N., Reddy M.S., Rajnayana K., Surender T., Krishna D.R. Oxidative stress and antioxidant status in acute organophosphorous insecticide poisoning. Indian J. Pharmac., 2004, 36, 76–79
  • [6] Poovala V.S., Huang H., Salahudeen A.K. Role of oxygen metabolites in organophosphate-bidrininduced renal tubular cytotoxicity. J. Am. Soc. Nephrol., 1999, 10, 1746–1752
  • [7] Oncu M., Gultekin F., Karaoz E., Altuntas I., Delibas N. Nephrotoxicity in rats induced by chlorpryfos-ethyl and ameliorating effects of antioxidants. Hum. Exp. Toxicol., 2002, 21, 223–230 http://dx.doi.org/10.1191/0960327102ht225oa[Crossref]
  • [8] Sharma Y., Bashir S., Irshad M., Gupta S.D., Dogra T.D. Effects of acute dimethoate administration on antioxidant status of liver and brain of experimental rats. Toxicology, 2005, 206, 49–54 http://dx.doi.org/10.1016/j.tox.2004.06.062[Crossref]
  • [9] Fortunato J.J., Agostinho F.R., Rreus G.Z., Petronilho F.C., Dal-Pizzol F., Quevedo J. Lipid peroxidative damage on malathion exposure in rats. Neurotox. Res., 2006, 9, 23–28 http://dx.doi.org/10.1007/BF03033304[Crossref]
  • [10] Lukaszewicz-Hussain A., Moniuszko-Jakoniuk J. A low dose of chlorfenvinphos affects hepatic enzymes in serum and antioxidant enzymes in erythrocytes and liver of the rat. Pol. J. Environm. Stud., 2005, 14, 199–202
  • [11] Lukaszewicz-Hussain A., Moniuszko-Jakoniuk J., Rogalska J. Assessment of lipid peroxidation in rat tissues in subacute chlorfenvinphos administration. Pol. J. Environm. Stud., 2007, 16, 233–236
  • [12] Lukaszewicz-Hussain A. Subchronic intoxication with chlorfenvinphos, an organophosphate insecticide, affects rat brain antioxidative enzymes and glutathione level. Food Chem. Toxicol., 2008, 46, 82–86 http://dx.doi.org/10.1016/j.fct.2007.06.038[WoS][Crossref]
  • [13] Oruc E.O., Usta D. Evaluation of oxidative stress responses and neurotoxicity potential of diazinon in different tissues of Cyprinus carpio. Environm. Toxicol. and Pharmacol., 2006, 23, 48–55 http://dx.doi.org/10.1016/j.etap.2006.06.005[Crossref]
  • [14] Tsatsakis A.M., Aguridakis P., Michalmitrakis M.N., Tsakalov A.K., Alegakis A.K., Koumantakis E. Experiences with acute organophosphate poisonings in Crete. Vet. Hum. Toxicol., 1996, 38, 101–107
  • [15] Berndt W.O., Baggett J., Hoskins B., Lim D.K., Ho I.K. Effects of diisopropylfluorophosphate (DFP) on renal function in the rat. Toxicology, 1984, 31, 223–235 http://dx.doi.org/10.1016/0300-483X(84)90104-5[Crossref]
  • [16] Baliga R., Ueda N., Walker P.D., Shah S.V. Oxidant mechanisms in toxic acute renal failure. Am. J. Kidney Dis., 1997, 29, 465–477 http://dx.doi.org/10.1016/S0272-6386(97)90212-2[Crossref]
  • [17] Salahudeen A.K., Clark E.C., Nath K.A. Hydrogen peroxide-induced renal injury: A protective role for pyruvate in vitro and in vivo. J Clin. Invest., 1991, 88, 1886–1891 http://dx.doi.org/10.1172/JCI115511[Crossref]
  • [18] Aebi H.E. Catalase in vitro. In: Methods of Enzym., 1984, 105, 121–126 http://dx.doi.org/10.1016/S0076-6879(84)05016-3[Crossref]
  • [19] Lowry O.H., Rosenbrough M.J., Farr A.L., Randall R. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193, 263–270
  • [20] Yurumez Y., Ikizcelli I., Sozuer E.M., Soyuer I., Yavuz Y., Avsarogullari L., Durukan P. Effect of Interleukine-10 on tissue damage caused by organophosphate poisoning. Basic and Clin. Pharmacol. Toxicol., 2007, 100, 323–327 http://dx.doi.org/10.1111/j.1742-7843.2007.00049.x
  • [21] Buyukokuroglu M.E., Cemek M., Yurumez Y., Yavuz Y., Aslan, A. Antioxidative role of melatonin in organophosphate toxicity in rats. Cell Biol. Toxicol., 2008, 24, 151–158 http://dx.doi.org/10.1007/s10565-007-9024-z[Crossref][WoS]
  • [22] Morgan M.J., Kim Y.S., Liu Z. Lipids rafts and oxidative stress - induced cell death. Antioxidants and redox signaling., 2007, 9, 1–13 http://dx.doi.org/10.1089/ars.2007.9.1[Crossref]
  • [23] Betrosian A., Balla M., Kafiri G., Kofinas G., Makri R., Kakouri A. Multiple systems organ failure from organophosphate poisoning. J. Toxicol. Clin. Toxicol., 1995, 33, 257–260 http://dx.doi.org/10.3109/15563659509017994[Crossref]
  • [24] Sulak O., Altuntas I., Karahan N., Yildrim B., Akturk O., Yilmaz R.H., Delibas N. Nephrotoxicity in rats induced by organophosphate insecticide methidathion and ameliorating effects of vitamins E and C. Pest. Biochem. Physiol., 2005, 83, 22–28 http://dx.doi.org/10.1016/j.pestbp.2005.03.008[Crossref]
  • [25] Girrotti A.W. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J. Lipid Res., 1998, 39, 1529–1542
  • [26] Mueller S., Riedel H.D., Stremmel W. Direct evidence for catalase as the predominant H2O2-removing enzyme in human erythrocytes. Blood, 1997, 90, 4973–4978
  • [27] Gerard-Monier D., Chaudiere J. Metabolism and antioxidant function of glutathione. Path. Biol., 1996, 44, E209–E214
  • [28] Lu C.S. Regulation of hepatic glutathione synthesis: current concepts and controversies. FASEB J., 1999, 13, 1169–1183
  • [29] Dringer R. Metabolism and functions of glutathione in brain. Proc. Neurobiol., 2000, 62, 649–671 http://dx.doi.org/10.1016/S0301-0082(99)00060-X[Crossref]
  • [30] Zasadowski A., Wysocki A., Barski D., Spodniewska A. Some aspects of reactive oxygen species (ROS) and antioxidative system agent’s action. Short review. Acta Toxic., 2004, 12, 5–21
  • [31] Yurumez Y., Cemek M., Yavuz Y., Birdane Y.O. Beneficial effect of N-acetylcysteine against organophoshate toxicity in mice. Biol. Pharmaceut. Bulletin., 2007, 30, 490–494 http://dx.doi.org/10.1248/bpb.30.490[Crossref]
  • [32] Kaur P., Radotra B., Minz R.W., Gill K.D. Impaired mitochondrial energy metabolism and neural apoptotic cell death after chronic dichlorvos (OP) exposure in rats brain. Neurotoxicol., 2007, 28, 1208–1219 http://dx.doi.org/10.1016/j.neuro.2007.08.001[WoS][Crossref]
  • [33] Pena-Llopis S., Ferrado M.D., Pena J.B. Fish tolerance to organophosphate - induced oxidative stress is dependent on the glutathione metabolism and enhanced by N-acetylcysteine. Aquatic Toxicol., 2003, 65, 337–360

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11536-009-0072-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.