Preferences help
enabled [disable] Abstract
Number of results
2009 | 4 | 4 | 496-500
Article title

Intervertebral test spacers and postfusion MRI artifacting: A comparative in vitro study of magnesium versus titanium and carbon fiber reinforced polymers as biomaterials

Title variants
Languages of publication
Intervertebral spacers are made of different materials, which can effect the postfusion magnetic imaging (MRI) scans. Susceptibility artifacts specially for metallic implants can decrease the image quality. This study aimed to determine whether magnesium as a lightweight and biocompatible metal is suitable as a biomaterial for spinal implants based on its MRI artifacting behavior. To compare artifacting behaviors, we implanted into one porcine cadaveric spine different test spacers made of magnesium, titanium and CFRP. All test spacers were scanned using 2 T1-TSE MRI sequences. The artifact dimensions were traced on all scans and statistically analyzed. The total artifact volume and median artifact area of the titanium spacers were statistically significantly larger than magnesium spacers (p < 0.001), while magnesium and CFRP spacers produced almost identical artifacting behaviors (p > 0.05). Our results suggest that spinal implants made with magnesium alloys will behave more like CFRP devices in MRI scans.
Physical description
1 - 12 - 2009
3 - 10 - 2009
  • Center for Spinal Surgery, Klinikum Bad Bramstedt, 24576, Bad Bramstedt, Germany
  • Biomaterial Laboratory, Department of Orthopaedic Surgery, University of Gottingen, 37075, Gottingen, Germany
  • Department of Diagnostic Radiology, University of Gottingen, 37075, Gottingen, Germany
  • [1] Brantigan J.W., Steffee A.D., A carbon fiber implant to aid interbody lumbar fusion. Two-year clinical results in the first 26 patients. Spine, 1993, 18, 2106–2107
  • [2] Debatin J.F., Nadel S.N., Sostman H.D., Spritzer C.E., Evans A.J., Grist T.M., Magnetic resonance imaging-cardiac ejection fraction measurements. Phantom study comparing four different methods. Invest Radiol, 1992, 27, 198–204[Crossref]
  • [3] Ernstberger T., Heidrich G., Bruening T., Krefft S., Buchhorn G., Klinger H.M., The interobservervalidated relevance of intervertebral spacer materials in MRI artifacting. Eur Spine J, 2006, 7, 1–7 [WoS]
  • [4] Ernstberger T., Heidrich G., Buchhorn G., Post implantation MRI with cylindric and cubic intervertebral test implants: Evaluation of implant shape, material and volume in MRI artifacting- an in vitro study. Spine J, 2007, 7, 353–359[WoS][Crossref]
  • [5] Henk C.B., Brodner W., Grampp S., Breitenseher M., Thurnher M., Mostbeck G.H., et al., The postoperative spine. Top Magn Reson Imaging, 1999, 10, 247–264[Crossref]
  • [6] Herold T., Caro W.C., Heers G., Perlick L., Grifka J., Feuerbach S., et al. Influence of sequence type on the extent of the susceptility artifact in MRI-a shoulder specimen study after suture anchor repair. Rofo, 2004, 176, 1296–1301 [Crossref]
  • [7] Lambotte A., L’utilisation du magnesium comme materiel perdu dans l’ostheosynthèse. Bull Mém Coc Nat Chir, 1932, 28, 1325–1334
  • [8] Malik A.S., Boyko O., Atkar N., Young W.F., A comparative study of MR imaging profile of titanium pedicle screws. Acta Radiol, 2001, 42, 291–293[Crossref]
  • [9] Ortiz O., Pait T.G., McAllister P., Sauter K., Postoperative magnetic resonance imaging with titanium implants of the thoracic and lumbar spine. Neurosurgery, 1996, 38, 741–745[Crossref]
  • [10] Petersilge C.A., Lewin J.S., Duerk J.L., Yoo J.U., Ghaneyem A.J. Optimizing imaging parameters for MR evaluation of the spine with titanium pedicle screws. Am J Roentenol, 1996, 166, 1213–1218 [Crossref]
  • [11] Rudisch A., Kremser C., Peer S., Kathrein A., Judmaier W., Daniaux H., Metallic artifacts in magnetic resonace imaging of patients with spinal fusion. A comparison of implant materials and implant sequences. Spine, 1998, 23, 692–699[Crossref]
  • [12] Rupp R., Ebraheim N.A., Savolaine E.R., Jackson W.T., Magnetic resonance imaging evaluation of the spine with metal implants. General safety and superior imaging with titanium. Spine, 1993, 18, 379–385[Crossref]
  • [13] Schreiner U., Schwarz M., Scheller G., Schroeder-Boersch H., Jani L., Knöchernes Einwachsverhalten von Probekörpern aus kohlefaserverstärktem Kunststoff. Z Orthop Ihre Grenzgeb, 2000, 138, 540–543[Crossref]
  • [14] Staiger M.P., Pietak A.M., Huadmai J., Dias G., Magnesium and its alloys as orthopaedic biomaterials: A review. Biomat, 2006, 27, 1728–1734[Crossref]
  • [15] Thomsen M., Schneider U., Breusch S.J., Hansmann J., Freund M., Artefacts and ferromagnetism dependent on different metal alloys in magnetic resonance imaging. An experimental study. Orthopade, 2001, 30, 540–544[Crossref]
  • [16] Troitskii V.V., Tsitrin D.N., The resorbing metallic alloy’ Ostheosinthzit ‘as material for fastening broken bone. Khirurgiia, 1944, 8, 41–44
  • [17] Vaccaro A.R., Chesnut R.M., Scuderi G., Healy J.F., Massie J.B., Garfin S.R., Metallic spinal artifacts in magnetic resonance imaging. Spine, 1994, 19, 1237–242 [Crossref]
  • [18] Van Goethem J.W., Parizel P.M., Jinkins J.R., Review article: MRI of the postoperative lumbar spine. Neuroradiology, 2002, 44, 723–739[Crossref]
  • [19] Walde T.A., Weiland D.E., Leung S.B., Sychterz C.J., Ho S., Engh C.A., et al., Comparison of CT, MRI and radiographs in assessing pelvic osteolysis: a cadaveric study. Clin Orthop Relat Res, 2005, 437, 138–144[Crossref]
  • [20] Wang J.C., Sandhu H.S., Yu M.D., Minchew J.T., Delamarter R.B., MR parameters for imaging titanium spinal instrumentation. J Spinal Disord, 1997, 10, 27–32[Crossref]
  • [21] Znamenskii M.S., Metallic ostheosynthesis by means of an apparatus made of resorbing metal. Khirurgiia, 1945, 12, 60–63
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.