Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2009 | 4 | 2 | 141-155

Article title

Antimicrobial resistance in bacteria


Title variants

Languages of publication



The development of antimicrobial resistance by bacteria is inevitable and is considered as a major problem in the treatment of bacterial infections in the hospital and in the community. Despite efforts to develop new therapeutics that interact with new targets, resistance has been reported even to these agents. In this review, an overview is given of the many therapeutic possibilities that exist for treatment of bacterial infections and how bacteria become resistant to these therapeutics.










Physical description


1 - 6 - 2009
27 - 3 - 2009


  • Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
  • Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000, Leuven, Belgium


  • [1] Cohen M.L., Changing patterns of infectious disease, Nature, 2000, 406, 762–767 http://dx.doi.org/10.1038/35021206[Crossref]
  • [2] Yoneyama H., Katsumata R., Antibiotic resistance in bacteria and its future for novel antibiotic development, Biosci. Biotechnol. Biochem., 2006, 70, 1060–1075 http://dx.doi.org/10.1271/bbb.70.1060[Crossref]
  • [3] Wright G.D., Bacterial resistance to antibiotics: enzymatic degradation and modification, Adv. Drug Deliv. Rev., 2005, 57, 1451–1470 http://dx.doi.org/10.1016/j.addr.2005.04.002[Crossref]
  • [4] Rachakonda S., Cartee L., Challenges in antimicrobial drug discovery and the potential of nucleoside antibiotics, Curr. Med. Chem., 2004, 11, 775–793 http://dx.doi.org/10.2174/0929867043455774[Crossref]
  • [5] Silver L.L., Novel inhibitors of bacterial cell wall synthesis, Curr. Opin. Microbiol., 2003, 6, 431–438 http://dx.doi.org/10.1016/j.mib.2003.08.004[Crossref]
  • [6] Wise R., A review of the mechanisms of action and resistance of antimicrobial agents, Can. Respir. J., 1999, 6Suppl A, 20A–22A [PubMed]
  • [7] Langton K.P., Henderson P.J., Herbert R.B., Antibiotic resistance: multidrug efflux proteins, a common transport mechanism?, Nat. Prod. Rep., 2005, 22, 439–451 http://dx.doi.org/10.1039/b413734p[Crossref]
  • [8] Lambert P.A., Bacterial resistance to antibiotics: modified target sites, Adv. Drug Deliv. Rev., 2005, 57, 1471–1485 http://dx.doi.org/10.1016/j.addr.2005.04.003[Crossref]
  • [9] Kahne D., Leimkuhler C., Lu W., Walsh C., Glycopeptide and lipoglycopeptide antibiotics, Chem. Rev., 2005, 105, 425–448 http://dx.doi.org/10.1021/cr030103a[Crossref]
  • [10] Reynolds P.E., Structure, biochemistry and mechanism of action of glycopeptide antibiotics, Eur. J. Clin. Microbiol. Infect. Dis., 1989, 8, 943–950 http://dx.doi.org/10.1007/BF01967563[Crossref]
  • [11] Wilke M.S., Lovering A.L., Strynadka N.C., Betalactam antibiotic resistance: a current structural perspective, Curr. Opin. Microbiol., 2005, 8, 525–533 http://dx.doi.org/10.1016/j.mib.2005.08.016[Crossref]
  • [12] Poole K., Resistance to beta-lactam antibiotics, Cell Mol. Life Sci., 2004, 61, 2200–2223 http://dx.doi.org/10.1007/s00018-004-4060-9[Crossref]
  • [13] Fisher J.F., Meroueh S.O., Mobashery S., Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity, Chem. Rev., 2005, 105, 395–424 http://dx.doi.org/10.1021/cr030102i[Crossref]
  • [14] Van Bambeke F., Van Laethem Y., Courvalin P., Tulkens P.M., Glycopeptide antibiotics: from conventional molecules to new derivatives, Drugs, 2004, 64, 913–936 http://dx.doi.org/10.2165/00003495-200464090-00001[Crossref]
  • [15] Williams D.H., The glycopeptide story-how to kill the deadly ’superbugs’, Nat. Prod. Rep., 1996, 13, 469–477 http://dx.doi.org/10.1039/np9961300469[Crossref]
  • [16] Sussmuth R.D., Vancomycin resistance: small molecule approaches targeting the bacterial cell wall biosynthesis, Chembiochem., 2002, 3, 295–298 http://dx.doi.org/10.1002/1439-7633(20020402)3:4<295::AID-CBIC295>3.0.CO;2-G[Crossref]
  • [17] Schmitz F.J., Higgins P.G., Mayer S., Fluit A.C., Dalhoff A., Activity of quinolones against Grampositive cocci: mechanisms of drug action and bacterial resistance, Eur. J. Clin. Microbiol. Infect. Dis., 2002, 21, 647–659 http://dx.doi.org/10.1007/s10096-002-0788-z[Crossref]
  • [18] Hooper D.C., Mechanisms of action of antimicrobials: focus on fluoroquinolones, Clin. Infect. Dis., 2001, 32Suppl 1, S9–S15 http://dx.doi.org/10.1086/319370[Crossref]
  • [19] Higgins P.G., Fluit A.C., Schmitz F.J., Fluoroquinolones: structure and target sites, Curr. Drug Targets., 2003, 4, 181–190 http://dx.doi.org/10.2174/1389450033346920[Crossref]
  • [20] Dougherty T.J., Beaulieu D., Barrett J.F., New quinolones and the impact on resistance, Drug Discov. Today, 2001, 6, 529–536 http://dx.doi.org/10.1016/S1359-6446(01)01760-3[Crossref]
  • [21] Woodford N., Biological counterstrike: antibiotic resistance mechanisms of Gram-positive cocci, Clin. Microbiol. Infect., 2005, 11Suppl 3, 2–21 http://dx.doi.org/10.1111/j.1469-0691.2005.01140.x[Crossref]
  • [22] Eliopoulos G.M., Quinolone resistance mechanisms in pneumococci, Clin. Infect. Dis., 2004, 38Suppl 4, S350–S356 [Crossref]
  • [23] Vannuffel P., Cocito C., Mechanism of action of streptogramins and macrolides, Drugs, 1996, 51Suppl 1, 20–30 http://dx.doi.org/10.2165/00003495-199600511-00006[Crossref]
  • [24] Johnston N.J., Mukhtar T.A., Wright G.D., Streptogramin antibiotics: mode of action and resistance, Curr. Drug Targets., 2002, 3, 335–344 http://dx.doi.org/10.2174/1389450023347678[Crossref]
  • [25] Shahid M., Aminoglycosidic aminocyclitol antibiotics-A wonder, but toxic drugs: Developments and clinical implications, Anti-infect. Agents Med. Chem., 2007, 6, 107–117 [Crossref]
  • [26] Jana S., Deb J.K., Molecular understanding of aminoglycoside action and resistance, Appl. Microbiol. Biotechnol., 2006, 70, 140–150 http://dx.doi.org/10.1007/s00253-005-0279-0[Crossref]
  • [27] Kotra L.P., Haddad J., Mobashery S., Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance, Antimicrob. Agents Chemother., 2000, 44, 3249–3256 http://dx.doi.org/10.1128/AAC.44.12.3249-3256.2000[Crossref]
  • [28] Speer B.S., Shoemaker N.B., Salyers A.A., Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance, Clin. Microbiol. Rev., 1992, 5, 387–399
  • [29] Roberts M.C., Update on acquired tetracycline resistance genes, FEMS Microbiol. Lett., 2005, 245, 195–203 http://dx.doi.org/10.1016/j.femsle.2005.02.034[Crossref]
  • [30] Chopra I., Roberts M., Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance, Microbiol. Mol. Biol. Rev., 2001, 65, 232–260 http://dx.doi.org/10.1128/MMBR.65.2.232-260.2001[Crossref]
  • [31] Maravic G., Macrolide resistance based on the Ermmediated rRNA methylation, Curr. Drug Targets. Infect. Disord., 2004, 4, 193–202 http://dx.doi.org/10.2174/1568005043340777[Crossref]
  • [32] Weisblum B., Erythromycin resistance by ribosome modification, Antimicrob. Agents Chemother., 1995, 39, 577–585 [Crossref][PubMed]
  • [33] Rezanka T., Spizek J., Sigler K., Medicinal use of lincosamides and microbial resistance to them, Anti-infect. Agents Med. Chem., 2007, 6, 133–144 [Crossref]
  • [34] Bozdogan B., Appelbaum P.C., Oxazolidinones: activity, mode of action, and mechanism of resistance, Int. J. Antimicrob. Agents, 2004, 23, 113–119 http://dx.doi.org/10.1016/j.ijantimicag.2003.11.003[Crossref]
  • [35] Toh S.M., Xiong L., Arias C.A., Villegas M.V., Lolans K., Quinn J., Mankin A.S., Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid, Mol. Microbiol., 2007, 64, 1506–1514 http://dx.doi.org/10.1111/j.1365-2958.2007.05744.x[Crossref]
  • [36] Enoch D.A., Bygott J.M., Daly M.L., Karas J.A., Daptomycin, J. Infect., 2007, 55, 205–213 http://dx.doi.org/10.1016/j.jinf.2007.05.180[Crossref]
  • [37] Johnson A., Daptomycin in the treatment of skin, soft-tissue and invasive infections due to Gram-positive bacteria, Future. Microbiol., 2006, 1, 255–265 http://dx.doi.org/10.2217/17460913.1.3.255[Crossref]
  • [38] Lange R.P., Locher H.H., Wyss P.C., Then R.L., The targets of currently used antibacterial agents: lessons for drug discovery, Curr. Pharm. Des, 2007, 13, 3140–3154 http://dx.doi.org/10.2174/138161207782110408[WoS][Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.