PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2008 | 3 | 1 | 21-28
Article title

Experimental attempt to produce mRNA transfected dendritic cells derived from enriched CD34+ blood progenitor cells

Content
Title variants
Languages of publication
EN
Abstracts
EN
It Peripheral blood progenitor enriched CD34+ cells (PBPC) are rather often used as stem cell background in cancer patients following high dose therapy. Keeping in mind that precursor dendritic cells (DCs) originate from haematopoietic progenitor cells, purified CD34+ cells might also serve as starting cells for ex-vivo production of DC. The aim of the present study is to develop a clinical grade procedure for ex-vivo production of DC derived from enriched CD34+ cells. Various concentrations of CD34+ cells were grown in gas-permeable Teflon bags with different serum-free and serum-containing media supplemented with GM-CSF, IL-4, TNF-a, SCF, Flt-3L and INF-a. Serum-free CellGroSCGM medium for 7 days followed by CellGroDC medium in 7 days gave equal results as serum-containing medium. Following incubation, the cultured cells containing immature DCs were concentrated and transfected with tumour mRNA from human prostate cancer cell lines employing a highly efficient electroporation procedure. Thawed transfected DCs were able to elicit primary T-cell responses in vitro against antigens encoded by the prostate cancer mRNA as shown by ELISPOT assay using mock-transfected DCs as control. The results of our study show that frozen enriched CD34+ cells can be an alternative and efficient source for production of DCs for therapeutic purpose.
Publisher
Journal
Year
Volume
3
Issue
1
Pages
21-28
Physical description
Dates
published
1 - 3 - 2008
online
1 - 3 - 2008
References
  • [1] Banchereau J., Steinman R.M., Dedritic cells and control of immunity, Nature, 1998, 392, 245–256 http://dx.doi.org/10.1038/32588[Crossref]
  • [2] Banchereau J., Briere F., Caux C., Davoust J., Lebecue S., Liu Y., et al., Immunobiology of dendritic cells, Ann. Rev. Immunol., 2000, 18, 767–773 http://dx.doi.org/10.1146/annurev.immunol.18.1.767[Crossref]
  • [3] Thurner B., Roder C., Dieckmann D., Heuer M., Kruse M., Glaser A., et al., Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application, J. Immmunol. Methods, 1999, 223, 1–15 http://dx.doi.org/10.1016/S0022-1759(98)00208-7[Crossref]
  • [4] Feuerstein B., Berger T., Maczek C., Roder C., Schreiner D., Hirsch U., et al., A method for the production of cryopreserved aliquots of antigen-preloaded, mature dendritic cells ready for clinical use, J. Immmunol. Methods, 2000, 245, 15–24 http://dx.doi.org/10.1016/S0022-1759(00)00269-6[Crossref]
  • [5] Maria R. Motta, Castellani M., Rizzi S., Curti A., Gubinelli F., Fogli M., et al., Generation of dendritic cells from CD14+ monocytes positively selected by immunomagnetic adsorption for multiple myeloma patients enrolled in a clinical trial of anti-idiotype vaccination., Br. J. Hemetol., 2003, 121, 240–250 http://dx.doi.org/10.1046/j.1365-2141.2003.04270.x[Crossref]
  • [6] Ramadan G., Schmidt R., Schubert J., In vitro generation of human CD86+ dendritic cells from CD34+ haematopoietic progenitors by PMA and in serum-free medium, Clin. Exp. Immunol., 2001, 126, 180–190 http://dx.doi.org/10.1046/j.1365-2249.2001.126_1er.x[Crossref]
  • [7] Strunk D., Rappersberger K., Egger K., Generation of human dendritic cells/ Langerhans cells from circulating CD34+ hematopoietic progenitor cells, Blood, 1996, 87, 1292–1299
  • [8] Enomoto M., Nagayama H., Sato K., Xu Y., Asano S., Takahashi T.A.,. In vitro generation of dendritic cells derived from cryopreserved CD34+ cells mobilized into peripheral blood in lymphoma patients, Cytotherapy, 2000, 2, 95–104 http://dx.doi.org/10.1080/146532400539099[Crossref]
  • [9] Titzer S., Christensen O., Manzke O., Tesch H., Wolf J., Emmerich B., et al., Vaccination of multiple myeloma patients with idiotypepulsed dendritic cells: immunological and clinical aspects, Br. J. Hemetol., 2000, 108, 805–812 http://dx.doi.org/10.1046/j.1365-2141.2000.01958.x[Crossref]
  • [10] Ferlazzo G., Wesa A., Wie W., Galy A., Dendritic Cells generated either from D34+ progenitor cells or from monocytes differ in their ability to activate antigen-specific CD8+ T cells, J. Immmunol., 1999, 163, 3597–3604
  • [11] Banchereau J., Palucka A.K., Dhodapkar M., Burkeholder S., Taquet N., Rolland A., et al., Immune and clinical responses in patients with metastatic melanoma to CD34 (+) progenitorderived dendritic cell vaccine, Cancer Res., 2001, 61, 6451–6458
  • [12] Mackensen A., Herbst B., Chen J., Kohler G., Noppen C., Herr W., et al., Phase 1 study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34+ hematopoietic progenitor cells, Int. J. Cancer, 2000, 86, 385–392 http://dx.doi.org/10.1002/(SICI)1097-0215(20000501)86:3<385::AID-IJC13>3.0.CO;2-T[Crossref]
  • [13] Luft T., Pang K., Thomas E., Bradley C., Savoia H., Trapani J., et al., A serum-free culture model for studying the differentiation of human dendritic cells from adult CD34+ progenitor cells, Exp. Hematology, 1998, 26, 489–500
  • [14] Kowalkowski K., Alzona M., Aono F., Van Epps D., Vachula M., Ex Vivo Generation of Dendritic Cells from CD34+ Cells in Gas-Permeable containers Under Serum-Free Conditions, J. Hematotherapy, 1998, 7, 403–411
  • [15] Mu L.J., Gaudernack G., Saeboe-Larssen S., Hammerstad H., Tierens A., Kvalheim G., A Protocol for Generation of Clinical Grade mRNATransfected Monocyte-Derived Dendritic Cells for Cancer Vaccines, Scand. J. Immmunol., 2003, 2, 58, 578–586 http://dx.doi.org/10.1046/j.1365-3083.2003.01333.x[Crossref]
  • [16] Blystad A.K., Holte H., Kvaløy S., Smeland E., Delabie J., Kvalheim G., High-dose therapy in patients with Hodgkin disease: the use of selected CD34+ cells is as safe as unmanipulated peripheral progenitor cells (PBPC), Bone marrow Transplantation, 2001, 28, 849–857 http://dx.doi.org/10.1038/sj.bmt.1703244[Crossref]
  • [17] Saeboe-Larssen S., Fossberg E., Gaudernack G., mRNA-based electrotransfection of human dendritic cells and induction of T-lymphocyte responses against the telomerase catalytic subunit (hTERT), J. Immunol. Methods, 2002, 259, 191–198 http://dx.doi.org/10.1016/S0022-1759(01)00506-3[Crossref]
  • [18] Kvalheim G., Clinical use of enriched CD34+ cells, Blood Therapies in Medicine, 2002, 2, 57–64
  • [19] Porgador A., Gilboa E., Bone-marrow generated dendritic cells pulsed with a Class I-restricted peptide are potent inducers of cytotoxic T-lymphocytes, J. Exp. Med., 1995, 182, 255–263 http://dx.doi.org/10.1084/jem.182.1.255[Crossref]
  • [20] Sallusto F., Lanzavecchia A., Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by GM-CSF plus IL-4 and downregulated by TNF-alpha, J. Exp. Med., 1994, 179, 1109–1114 http://dx.doi.org/10.1084/jem.179.4.1109[Crossref]
  • [21] Caux C., Dezutter-Dambuyant C., Schmitt D., Banchereau J., GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells, Nature, 1992, 360, 258–267 http://dx.doi.org/10.1038/360258a0[Crossref]
  • [22] Curti A., Fogli M., Ratta M., Tura S., Lemoli R., Stem cell factor and FLT3-ligand are strictly required to sustain the long-term expansion of primitive CD34+ DR-dendritic cell precursors., J. Immunol., 2001, 166, 848–852
  • [23] Luft T., Pang K., Thomas E., Hertzog P., Hart D., Trapani J., et al., Type I IFNs enhance the terminal differentiation of DC, J. Immunol., 1998, 161, 1947–1953
  • [24] Gilboa E., Nair S.K., Lyerly H. Kim, Immunotherapy of cancer with dendritic cells based vaccines, Cancer Immunol. Immunotherapy, 1998, 46, 82–89 http://dx.doi.org/10.1007/s002620050465[Crossref]
  • [25] Boczkowski B., Nair S. K., Nam J., Lyerly H., Gilboa E., Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells, Cancer Res., 2000, 60, 1028–1036
  • [26] Arlen P.M., Gulley J.L., Palena C., Marshall J., Schlom J., Tsang K.-Y., A novel ELISPOT assay to enhance detection of antigen-specific T-cella employing antigen-presenting cells expressing vector-driven human B7-1, J. Immunol. Methods, 2003, 279, 183–190 http://dx.doi.org/10.1016/S0022-1759(03)00185-6[Crossref]
  • [27] Lazarova P., Wu Q., Kvalheim G., Suo Z., Haakenstad K.W., Metodiev K., et al., Growth factor receptors in hematopoietic stem cells: EPH family expression in CD34+ and CD133+ cell populations from mobilized peripheral blood, Int. J. Immunopathol. Pharmacol., 2006, 19, 49–56
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11536-007-0072-9
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.