Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2006 | 1 | 3 | 205-227

Article title

Xenobiotics with estrogen or antiandrogen action - disruptors of the male reproductive system


Title variants

Languages of publication



The environmental and life-style changes associated with developing industry and agriculture, especially the exposure to endocrine disrupting chemicals (xenobiotics), are considered as causes of the increasing incidence of male reproductive system disorders. Most of the xenobiotics, which harmfully influence the male reproductive system, reveal estrogen-like (xenoestrogens) or anti-androgenic activity. Recent data have revealed physiological roles of estrogens in the male, however, there are evidences that estrogen-like substances may lead to many undesirable symptoms in the male i.e. gonadal dysgenesis, genital malformations, cryptorchidism, decreased fertility potential and testicular neoplastic changes. The number of xenoestrogens is still growing in the environment, whereas the mechanisms of their action are still not exactly known. They can be harmful not only to the present but potentially also to the next generations.










Physical description


1 - 9 - 2006
27 - 8 - 2006


  • Department of Andrology and Reproductive Endocrinology, Medical University of Łódź, 91-425, Łódź, Poland


  • [1] K.S. Korach: “Insights from the study of animals lacking functional estrogen receptor”, Science, Vol. 266, (1994), pp. 1524–1527. [Crossref]
  • [2] S. Carreau, S. Lambard, C. Delalande et al.: “Aromatase expression and role of estrogens in male gonad: a review”, Reprod. Biol. Endocrinol., Vol. 1, (2003), p. 35. [Crossref]
  • [3] K. Kula: “Induction of precocious maturation of spermatogenesis in infant rats by human menopausal gonadotropin and inhibition by simultaneus administration of gonadotropins and testosterone”, Endocrinol., Vol. 122, (1988), pp. 32–39. http://dx.doi.org/10.1210/endo-122-1-34[Crossref]
  • [4] F.J.P. Ebling, A.N. Brooks, A.S. Cronin et al.: “Estrogenic induction of spermatogenesis in the hypogonadal mouse”, Endocrinol., Vol. 141, (2000), pp. 2861–2869.
  • [5] K. Kula, R. Walczak-Jędrzejowska, J. Słowikowska-Hilczer et al.: “Estradiol enhances the stimulatory effect of FSH on testicular maturation and contributes to precocious initiation of spermatogenesis”, Mol. Cell. Endocrinol., Vol. 178, (2001), pp. 89–97. [Crossref]
  • [6] R. Walczak-Jędrzejowska, J. Słowikowska-Hilczer, E. Oszukowska et al.: Initiation of spermatogenesis may require simultaneous action of two steroid hormones: estradiol and testosterone”, In: International Proceedings, Medimond, 2005, pp. 91-95.
  • [7] J. Słowikowska-Hilczer, M. Metera, R. Walczak et al.: “Spermatogenesis in boys with precocious puberty and excessive secretion of testosterone and estradiol”, Ginekol. Pol., Vol. 66, (1995), pp. 71–76.
  • [8] K. Kula, J. Słowikowska-Hilczer, T.E. Romer et al.: “Precocious maturation of the testis in the increased secretion of estradiol and testosterone by Leydig cells”, Pediatr. Pol., Vol. 3, (1996), pp. 269–273.
  • [9] S. Jesmin, C. N. Mowa, N. Matsuda et al.: “Evidence for a potential role of estrogen in the penis: detection of estrogen receptor-alpha and-beta messenger ribonucleic acid and protein”, Endocrinol., Vol. 143, (2002), pp. 4764–4774. [Crossref]
  • [10] C. Crescioli, M. Maggi, G. B. Vanelli et al.: “Expression of functional estrogen receptors in human fetal male external genitalia”, J. Clin. Endocrinol. Metab., Vol. 88, (2003), pp. 1815–1824. [Crossref]
  • [11] C. Carani, K. Qin, M. Simoni et al.: “Effect of testosterone and estradiol in a man with aromatase deficiency”, New Engl. J. Med., Vol. 337, (1997), pp. 91–95. [Crossref]
  • [12] M. Faustini-Fustini, V. Rochira and C. Carani: “Oestrogen deficiency in men: where are we today?”, Europ. J. Endocrinol., Vol. 140, (1999), pp. 111–129.
  • [13] V. Rochira, A. Balestrieri, M. Faustini-Fustini et al.: “Role of estrogen on bone in the human male: insights from the natural models of congenital estrogen deficiency”, Mol. Cell Endocrinol., Vol. 178, (2001), pp. 215–220. [Crossref]
  • [14] B.S. McEwen and S.E. Alves: “Estrogen actions in the central nervous system”, Endocrine Rev., Vol. 20, (1999), pp. 279–307.
  • [15] M.M. Grumbach and R.J. Auchus: “Estrogen: Consequences and implications of human mutations in synthesis and action”, J. Clin. Endocrinol. Metab., Vol. 84, (1999), pp. 4677–4694.
  • [16] J.K. Wranicz, I. Cygankiewicz, M. Rosiak et al.: “The relationship between sex hormones and lipid profile in men with coronary artery disease”, Int. J. Cardiol., Vol. 101, (2005), pp. 105–110. [Crossref]
  • [17] J.W. Thornton, E. Need and D. Crews: “Resurrecting the ancestral steroid receptor: ancient origin of estrogen signaling”, Science, Vol. 301, (2003), pp. 1714–1717. [Crossref]
  • [18] M.E. Baker: “Adrenal and sex steroid receptor evolution: environmental implications”, J. Mol. Endocrinol., Vol. 26, (2001), pp. 119–125. [Crossref]
  • [19] S. Yeh, H. Miyamoto, H. Shima et al.: “From estrogen to androgen receptor: A new pathway for sex hormones in prostate”, PNAS, Vol. 95, (1998), pp. 5527–5532.
  • [20] R.A. Hess, Q. Zhou and R. Nie: “The role of estrogens in the endocrine and paracrine regulation of the efferent ductules, epididymis and vas deferens”, In: The epididymis: from molecules to clinical practice, Kluwer Academic/Plenum Publishers, New York, 2002, pp. 317–338.
  • [21] P.T. Saunders, R.M. Sharpe, K. Williams et al.: “Differential expression of oestrogen receptor alpha and beta proteins in the testes and male reproductive system of human and non-human primates”, Mol. Hum. Reprod., Vol. 7, (2001), pp. 497–503.
  • [22] M.B. Hawkins, J.W. Thornton, D. Crews et al.: “Identification of a third distinct estrogen receptor and reclassification of estrogen receptors in teleolosts”, Proc. Natl. Acad. Sci. USA, Vol. 97, (2000), pp. 10751–10756. [Crossref]
  • [23] EUROCAT Website Database, www.biomedicalweb.biz/eurocat, 2005.
  • [24] J. Toppari, J.C. Larsen, P. Christiansen et al.: “Male reproductive health and environmental xenoestrogens”, Environ. Health Perspect., Vol. 104, (1996), pp. 741–803. [Crossref]
  • [25] L.J. Paulozzi: “International trends in rates of hypospadias and cryptorchidism”, Environ. Health Perspect., Vol. 107, (1999), pp. 297–302. [Crossref]
  • [26] A. Latos-Bieleńska, A. Materna-Kiryluk, M.R. Krawczyński et al.: “Genital malformations in Poland - data from the Polish Registry of Congenital Malformations”, Horm. Res., Vol. 5, (1999), p. 78.
  • [27] L.J. Paulozzi, J.D. Erickson and R.J. Jackson: “Hypospadias trends in two US surveillance systems”, Pediatr, Vol. 5, (1997), pp. 831–834. [Crossref]
  • [28] F.H. Pierik, A. Burdof, I. M.R. Nijma et al.: “A high hypospadias rate in the Netherlands”, Hum. Reprod., Vol. 17, (2002), pp. 1112–1115. [Crossref]
  • [29] M. Aho, A.M. Koivisto, T.L.J. Tannela et al.: “Is the incidence of hypospadias increasing? Analysis of Finnish Hospital discharge data 1970–1994”, Environ. Health Perspect., Vol. 108, (2000), pp. 463–465.
  • [30] E. Carlsen, A. Giwercman, N. Keiding et al.. “Evidence for decreasing quality of semen during past 50 years”, Br. Med. J., Vol. 30, (1992), pp. 609–613. [Crossref]
  • [31] N.E. Skakkebaek, E. Rajpert-DeMeyts and K.M. Main: “Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects”, Hum. Reprod., Vol. 16, (2001), pp. 972–978. [Crossref]
  • [32] P.F. Thonneau, P. Candia and R. Mieusset: “Cryptorchidism: Incidence, risk factors, and potential role of environment; an update”, J. Androl., Vol. 24, (2003), pp. 155–162.
  • [33] J. Didkowska, U. Wojciechowska, W. Tarkowski et al.: Cancer in Poland in 1999, Centrum Onkologii, Instytut im. M. Skłodowskiej-Curie, Zakład Epidemiologii i Prewencji Nowotworów Warszawa 2002
  • [34] J. Toppari, J. C. Larsen, P. Christiansen et al.: Male reproductive health and environmental chemicals with estrogenic effects, Danish Environmental Protection Agency, Copenhagen, 1995.
  • [35] H. Adami, R. Bergstrom, M. Mohner et al.: “Testicular cancer in nine Northern European countries”, Int. J. Cancer, Vol. 59, (1994), pp. 33–38. [Crossref]
  • [36] H. Møller and H. Evans: “Epidemiology of gonadal germ cell cancer in males and females”, APMIS, Vol. 111, (2003), pp. 43–46. [Crossref]
  • [37] J. Auger, J.M. Kunstmann, F. Czyglik et al.: “Decline in semen quality among fertile men in Paris during the past 20 years”, New Engl. J. Med., Vol. 332, (1995), pp. 281–285.
  • [38] J. Suominen and M. Vierula: “Semen quality of Finnish men”, Br. Med. J., Vol. 306, (1993), p. 1579 http://dx.doi.org/10.1136/bmj.306.6892.1579[Crossref]
  • [39] S.H. Swan, E.P. Elkon and L. Fenster: “Have sperm densities declined? A reanalysis of global trend data”, Environ. Health Perspect., Vol. 105, (1997), pp. 1228–1232. [Crossref]
  • [40] S.H. Swan, E.P. Elkon and L. Fenster: “The question of declining sperm density revisited: an analysis of 101 studies published 1934–1996”, Environ. Health Perspect., Vol. 108, (2000), pp. 961–966.
  • [41] N. Jőrgensen, E. Carlsen, I. Nermoen et al.: “East-West gradient in semen quality in the Nordic-Baltic area: a study of men from the general population in Denmark, Norway, Estonia and Finland”, Hum. Reprod., Vol. 17, (2002), pp. 2199–2208. [Crossref]
  • [42] J. Słowikowska-Hilczer, R. Walczak-Jędrzejowska and K. Kula: “Immunohistochemical diagnosis of preinvasive germ cell cancer of the testis”, Folia Histochem. Cytobiol., Vol. 39, (2001), pp. 67–72.
  • [43] J. Słowikowska-Hilczer, T.E. Romer and K. Kula: “Neoplastic potential of germ cells in relation to disturbances of gonadal organogenesis and changes in karyotype”, J. Androl., Vol. 24, (2003), pp. 270–278.
  • [44] E. Rapley, G. P. Crockford, D. Teare et al.: “Localisation to Xq27 of a susceptibility gene for testicular germ-cell tumours”, Nat. Genet., Vol. 24, (2000), pp. 197–200. [Crossref]
  • [45] E. Rapley, G.P. Crockford, D.F. Easton et al.: “Localisation of susceptibility genes for familial germ cell tumour”, APMIS, Vol. 111, (2003), pp. 128–135. [Crossref]
  • [46] A.S. Goldman and A.M. Bongiovanni: “Induced genital anomalies”, Ann. NY Acad. Sci., Vol. 142, (1967), pp. 755–767. [Crossref]
  • [47] A. Czeizel, J. Toth and E. Erodi: “Aetiological studies of hypospadias in Hungary”, Hum. Hered., Vol. 38, (1979), pp. 45–50.
  • [48] L. Raman-Wilms, A. Lin-in Tseng, S. Wighardt et al.: “Fetal genital effects of first-trimester sex hormone exposure: a meta-analysis”, Obstet. Gynecol., Vol. 85, (1995), pp. 141–149. [Crossref]
  • [49] Skakkebaek N.E., E. Rajpert-deMeyts, N. Jőrgensen et al.: “Germ cell cancer and disorders of spermatogenesis: An environmental connection?”, APMIS, Vol. 106, (1998), pp. 3–12. http://dx.doi.org/10.1111/j.1699-0463.1998.tb01314.x[Crossref]
  • [50] A.M. Andersson and N.E. Skakkebaek: “Exposure to exogenous estrogens in food: possible impact on human development and health”, Eur. J. Endocrinol., Vol. 140, (1999), pp. 477–485. [Crossref]
  • [51] J.A. McLachlan: “Environmental Signaling: what embryos and evolution teach us about endocrine disrupting chemicals”, Endocr. Rev., Vol. 22, (2001), pp. 319–341. [Crossref]
  • [52] T.E. Bryan, R.P. Gildersleeve and R.P. Wiard: “Exposure of Japanese quail embryos to o,p′-DDT has long-term effects on reproductive behaviors, hematology, and feather morphology”, Teratology, Vol. 39, (1989), pp. 525–535. [Crossref]
  • [53] E. Willingham and D. Crews: “Sex reversal effects on environmentally relevant xenobiotic concentrations on the red-eared slider turtle, a species with temperature-dependent sex determination”, Gen. Comp. Endocrinol., Vol. 113, (1999), pp. 429–435. [Crossref]
  • [54] J. Oehlmann, U. Schulte-Oehlmann, M. Tillmann et al.: “Effects of endocrine disruptors on prosobranch snails (Mollusca: Gastropoda) in the laboratory. I. Bisphenol A and octylphenol as xeno-estrogens”, Ecotoxicol., Vol. 9, (2000), pp. 383–397. [Crossref]
  • [55] J.G. Vos, E. Dybing, H.A. Greim et al.: “Health effects on endocrine-disrupting chemicals on wildlife, with special reference to the European situation”, Crit. Rev. Toxicol., Vol. 30, (2000), pp. 71–133. [Crossref]
  • [56] R.M. Blair, H. Fang, W.S. Branham et al.: “The estrogen receptor relative binding affinities of 188 natural and xenochemicals:structural diversity of ligands”, Toxicol. Sci., Vol. 54, (2000), pp. 138–153. [Crossref]
  • [57] L.J. Guillette Jr, T.S. Gross, G.R. Masson et al.: “Developmental abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in Florida”, Environ. Health Perspect., Vol. 102, (1994), pp. 681–688.
  • [58] L.J. Guillette Jr, A.R. Woodward, D.A. Crain et al.: “Plasma steroid concentrations and male phallus in juvenile alligators from seven Florida lakes”, Gen. Comp. Endocrinol., Vol. 116, (1999), pp. 356–372. [Crossref]
  • [59] R.M. Welch and A.H. Conney: “Estrogenic action of DDT and its analogs”, Toxicol. Appl. Pharmacol., Vol. 14, (1969), pp. 358–367. [Crossref]
  • [60] S.C. Laws, S.A. Carey and W.R. Kelce: “Differential effects of environmental toxicants on steroid receptor binding”, Toxicologist, Vol. 15, (1995), p. 294.
  • [61] W.R. Kelce, C.R. Stone, S.C. Laws et al.: “Persistent DDT metabolite p,p″-DDE is a potent androgen receptor antagonist”, Nature, Vol. 375, (1995), pp. 581–585.
  • [62] D. Sampaio, J.B. Neto, F. Audran et al.: “Explosive rise in malformations of new-born male genitalia in Northeastern Brazil: Consequences of a polluted environment?”, Horm. Res., Vol. 64, (2005), pp. 127–128.
  • [63] E.P. Murono, R.C. Derk and Y. Akgul: “In vivo exposure of young adult male rats to methoxychlor reduces serum testosterone levels and ex vivo Leydig cell testosterone formation and cholesterol side-chain cleavage activity”, Reprod. Toxicol., Vol. 21, (2006), pp. 148–153. [Crossref]
  • [64] G.A. LeBlanc, L.J. Bain and V.S. Wilson: “Pesticides: multiple mechanisms of demasculinization”, Mol. Cell. Endocrinol., Vol. 126, (1997), pp. 1–5. [Crossref]
  • [65] N.E. Skakkebaek and N. Keiding: “Changes in semen and the testis”, Br. Med. J., Vol. 309, (1994), pp. 1316–1317.
  • [66] K. A. Boisen, M. Kaleva, K. M. Main et al.: “Difference in prevalence of congenital cryptorchidism in infants between two Nordic countries”, Lancet, Vol. 363, (2004), pp. 1250–1251.
  • [67] I.N. Damgaard, H. Virtanen, M. Kaleva et al.: “Pesticides in Danish and Finnish breast milk samples”, Horm. Res., Vol. 64, (2005), p. 128.
  • [68] M.R. Milnes, D.S. Bermudez, T.A. Bryan et al.: “Altered neonatal and endocrine function in Alligators mississipiensis a.ssociated with contaminated environment”, Biol. Reprod., Vol. 73, (2005), pp. 1004–1010. [Crossref]
  • [69] T. Schettler: “Human exposure to phthalates via consumer products”, Int. J. Androl., Vol. 29, (2006), pp. 134–139. [Crossref]
  • [70] H.M. Koch, H. Drexler and J. Angerer: “An estimation of the daily intake of di(2-ethylhexyl) phthalate (DEHP) and other phthalates in the general population”, Int. J. Hyg. Environ. Health, Vol. 206, (2003), pp. 77–83.
  • [71] G.K. Mortensen, K.M. Main, A.M. Andersson et al.: “Determinations of phthalate monoesters in human breast milk, consumer milk and infant formula by tandem mass spectrometry (LC/MC/MS)”, Analyt. Bioanalyt. Chem., Vol. 382, (2005), pp. 1084–1092.
  • [72] M.J. Silva, J.A. Reidy, A.R. Herbert et al.: “Detection of phthalate metabolites in human amniotic fluid”, Bull. Environ. Contam. Toxicol., Vol. 72, (2004b), pp. 1226–1231.
  • [73] M.J. Silva, J.A. Reidy, E. Samandar et al.: “Detection of phthalate metabolites in human saliva”, Arch. Toxicol., Vol. 79, (2005), pp. 647–652. [Crossref]
  • [74] M.J. Silva, D.B. Barr, J.A. Reidy et al.: “Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999–2000”, Environ. Health Persp., Vol. 112, (2004a), pp. 331–338. http://dx.doi.org/10.1289/ehp.6723[Crossref]
  • [75] D. Seidlova-Wuttke, H. Jarry and W. Wuttke: “Pure estrogenic effect of benzophenone-2 (BP2) but not of bisphenol A (BPA) and dibytylphthalate (DBP) in uterus, vagina and bone”, Toxicol., Vol. 205, (2004), pp. 103–112.
  • [76] J.S. Fisher, S. Macpherson, N. Marchetti et al.: “Human“testicular dysgenesis syndrome”: a possible model using in-utero exposure of the rat to dibutyl phthalate”, Hum. Reprod., Vol. 18, (2003), pp. 1–13.
  • [77] I.K. Mahood, N. Hallmark, C. McKinnell et al.: “Abnormal Leydig cell aggregation in the fetal testis of rats exposed to di(n-butyl) phthalate and its possible role in testicular dysgenesis”, Endocrinol., Vol. 146, (2005), pp. 613–623. [Crossref]
  • [78] I.K. Mahood, C. McKinnell, H. Walker et al.: “Cellular origins of testicular dysgene-sis in rats exposed in utero to di(n-butyl) phthalate”, Int. J. Androl., Vol. 29, (2006), pp. 148–154. [Crossref]
  • [79] N. Ben-Jonathan and R. Steinmetz: “Xenoestrogens: the emerging story of bisphenol A”, Trend. Endocrinol. Metab., Vol. 9, (1998), pp. 124–128.
  • [80] J.A. Brotons, M.F. Olea-Serrano, M. Villalobos et al.: “Xenoestrogens released from lacquer coatings in food cans”, Environ. Health Perspect., Vol. 103, (1995), pp. 608–612. [Crossref]
  • [81] N. Olea, R. Pulgar, P. Perez et al.: “Estrogenicity of resin-based composites and sealants used in dentistry”, Environ. Health Perspect., Vol. 104, (1996), pp. 298–305. [Crossref]
  • [82] C.E. Purdom, P.A. Hardiman, V.J. Bye et al.: “Estrogenic effects of effluents from sewage treatment works”, Chem. Ecol., Vol. 8, (1994), pp. 275–285. [Crossref]
  • [83] G.G.J.M. Kuiper, B. Carlsson, K. Grandien et al.: “Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β”, En-docrinol., Vol. 138, (1997), pp. 863–870.
  • [84] S.E. Chia, C.N. Ong, S.T. Lee et al.: “Blood concentrations of lead, cadmium, mercury, zinc, and copper and human semen parameters”, Arch. Androl., Vol. 29, (1992), pp. 177–183. [Crossref]
  • [85] M. Rodamilans, M.J. Martinez-Osaba, J. To-Figueras et al.: “Inhibition of intratesticular testosterone synthesis by inorganic lead”, Toxicoll. Lett., Vol. 42, (1988), pp. 285–290. [Crossref]
  • [86] W. Awara, N. El-Ashmawy, S. Nassar et al.: “Fas signalling system mediates cadmium-induced testicular apoptosis in rats. A protective role of selenium”, In: Andrology of the 21st Century, Medimond, 2001.
  • [87] C. Millan, R. Z. Sokol, Q. Shu et al.: Lead induces epigenetic modification of rat testicular gene expression: a DNA microarray study, Andrology of the 21st Century, Medimond, 2001.
  • [88] P. Garcia-Morales, M. Saceda, N. Kenney et al.: “Effect of cadmium on estrogen receptor levels and estrogen-induced responses in human breast cancer cells”, J. Biol. Chem., Vol. 269, (1994), pp. 16896–16901.
  • [89] A. Stoica, B.S. Katzenellenbogen and M.B. Martin: “Activation of estrogen receptor-α by the heavy metal cadmium”, Mol. Endocrinol., Vol. 14, (2000), pp. 545–553
  • [90] W.B. Gill, G.F.B. Schumacher, M. Bibbo et al.: “Association of diethylstilbestrol exposure in utero with cryptorchidism, testicular hypoplasia and semen abnormalities”, J. Urol., Vol. 122, (1979), pp. 36–39.
  • [91] S.G. Driscoll and S.H. Taylor: “Effects of prenatal maternal estrogen on the male urogenital system”, Obstet. Gynecol., Vol. 56, (1980), pp. 537–542.
  • [92] R.R. Newbold and J.A. McLachlan: “Transplacental hormonal carcinogenesis: di-ethylstilbestrol as an example”, Cellular and Molecular Mechanisms of Hormonal Carcinogenesis, Wiley-Liss, New York, 1996.
  • [93] C. McKinnell, N. Atanassova, K. Williams et al.: “Suppression of androgen action and the induction of gross abnormalities of the reproductive tract in male rats treated neonatally with diethylstilbestrol”, J. Androl., Vol. 2, (2001), pp. 323–338.
  • [94] A.C. Belfroid, A. Van der Horst, A. D. Vethaak et al.: “Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in The Netherlands”, Sci. Total Environ., Vol. 225, (1999), pp. 101–108.
  • [95] A. Lagana, A. Bacaloni, G. Fago et al.: “Trace analysis of estrogenic chemicals in sewage effluent using liquid chromatography combined with tandem mass spectrometry”, Rapid Commun. Mass Spectrom., Vol. 14, (2000), pp. 401–407.
  • [96] N. Atanassova, C. McKinnell, M. Walker et al.: “Permanent effects of neonatal estrogen exposure in rats on reproductive hormone levels, Sertoli cell number, and the efficiency of spermatogenesis in adulthood”, Endocrinol., Vol. 140, (1999), pp. 5364–5373.
  • [97] R.M. Sharpe, A. Rivas, M. Walker et al.: “Effect of neonatal treatment of rats with potent or weak (environmental) oestrogens, or with a GnRH antagonist, on Leydig cell development and function through puberty into adulthood”, Int. J. Androl., Vol. 26, (2003), pp. 26–36. [Crossref]
  • [98] J.S. Fisher, K.J. Turner, D. Brown et al.: “Effect of neonatal exposure to estrogenic compounds on development of the excurrent ducts of the rat testis through puberty to adulthood”, Environ. Health Perspect., Vol. 107, (1999), pp. 397–405. [Crossref]
  • [99] N. Atanassova, C. McKinnell, K. J. Turner et al.: “Comparative effects of neonatal exposure of male rats to potent weak (environmental) estrogens on spermatogenesis at puberty and the relationship to adult testis size and fertility; evidence for stimulatory effects of low estrogen levels”, Endocrinol., Vol. 141, (2000), pp. 874–886.
  • [100] K. Williams, J.S. Fisher, K.J. Turner et al.: “Relationship between expression of sex steroid receptors and structure of the seminal vesicles after neonatal treatment of rats with potent or weak estrogens, tamoxifen, flutamide or a GnRH antagonist”, Environ. Health Perspect., Vol. 109, (2001), pp. 1227–1235. [Crossref]
  • [101] G.S. Prins and L. Birch: “The developmental pattern of androgen receptor expression in rat prostate lobes is altered after neonatal exposure to estrogen”, Endocrinol., Vol. 136, (1995), pp. 1303–1314.
  • [102] G.S. Prins, L. Birch, J.F. Couse et al.: “Estrogen imprinting of the developing prostate gland is mediated through stromal estrogen receptor alpha: studies with alpha ERCO and beta ERKO mice”, Cancer Res., Vol. 61, (2001), pp. 6089–6097.
  • [103] H. Adlercreutz and W. Mazur: ”Phyto-estrogens and western diseases”, Ann. Med., Vol. 29, (1997), pp. 95–120. [Crossref]
  • [104] A.L. Murkies, G. Wilcox and S.R. Davis: ”Phytoestrogens”, Clin. Endocrinol. Metab., Vol. 83, (1998), pp. 297–310.
  • [105] D.M. Tham, C.D. Gardner and W.L. Haskell: ”Potential health benefits of dietary phytoestrogens: a review of the clinical, epidemiological, and mechanistic evidence”, J. Clin. Endocrinol. Metab., Vol. 83, (1998), pp. 2223–2235.
  • [106] H.W. Bennetts, E.J. Underwood and F.L. Shier: ”A specific breeding problem of sheep on subterranean clover pastures in Western Australia”, Aust. Vet. J., Vol. 22, (1946), pp. 2–12. [Crossref]
  • [107] J. Kumi-Diaka and J. Townsend: ”Effects of genistein isoflavone (4′,5′,7-trihydroxyisoflavone) and dexamethasone on functional characteristics of spermatozoa”, J. Med. Food, Vol. 4, (2001), pp. 39–47.
  • [108] F. Paris, N. Servant, J.P. Gavedi et al.: “Antiandrogenic activities of phyto-and mycoestrogens: Natural endocrine disruptors?”, Horm. Res., Vol. 64, (2005), p. 25.
  • [109] R.A. Meronuck, K.H. Garren, C.M. Christensen et al.: “Effects on turkey poults and chicks of rations containing corn invaded by Penicillium and Fusarium species”, Am. J. Vet. Res., Vol. 31, (1970), pp. 551–555.
  • [110] K. Roine, E.L. Korpinen and K. Kallela: ”Mycotoxicosis as a probable cause of infertility in dairy cows”, Nord. Vet. Med., Vol. 23, (1971), pp. 628–633.
  • [111] W. Powell-Jones, S. Raeford and G.W. Lucier: ”Binding properties of zearalenone mycotoxins to hepatic estrogen receptors”, Mol. Pharmacol., Vol. 20, (1981), pp. 35–42.
  • [112] J. Buckley, E. Willingham, K. Agras et al.: “Embryonic exposure to the fungicide vinclozolin causes virilization of females and alteration of progesterone receptor expression in vivo: an experimental study in mice”, Environ. Health, Vol. 5, (2006), pp. 4–10. [Crossref]
  • [113] M.D. Anway, M.A. Memon, M. Uzumcu et al.: “Transgenerational effect of the endocrine disruptor vinclozolin on male spermatogenesis”, J. Androl., (2006), ahead of print. [Crossref]
  • [114] M. Muramatsu and S. Inoue: ”Estrogen receptors: how do they control reproductive and non-reproductive functions?”, Biochem. Res. Commun., Vol. 270, (2000), pp. 1–10. [Crossref]
  • [115] C.A. Blake, F.R. Boockfor, J.U. Nair-Menon et al.: “Effects of 4-tert-octylphenol given in drinking water for 4 months on the male reproductive system of Fischer 344 rats”, Reprod. Toxicol., Vol. 18, (2004), pp. 43–51. [Crossref]
  • [116] F.R. Boockfor and C.A. Blake: ”Chronic administration of 4-tert-octylphenol to adult male rats causes shrinkage of the testes and male accessory sex organs, disrupts spermatogenesis, and increases the incidence of sperm deformities”, Biol. Reprod., Vol. 57, (1997), pp. 267–277. [Crossref]
  • [117] S. Khurana, S. Ranmal and N. Ben-Jonathan: ”Exposure of newborn male rats and female rats to environmental estrogens: delayed and sustained hyperprolactinemia and alterations in estrogen receptor expression”, Endocrinol., Vol. 12, (2000), pp. 4512–4516.
  • [118] R. Steinmetz, N.G. Brown, D.L. Allen et al.: “The environmental estrogen bisphenol A stimulates prolactin release in vitro and in vivo”, Endocrinol., Vol. 138, (1997), pp. 1780–1786.
  • [119] K.G. Nelson, Y. Sakai, B. Eitzman et al.: “Exposure to diethylstilbestrol during a critical developmental period of the mouse reproductive tract leads to persistent induction of two estrogen-regulated genes”, Cell. Growth Differ., Vol. 5, (1994), pp. 595–606.
  • [120] S. Li, K.A. Washburn, R. Moore et al.: “Developmental exposure to diethylstilbestrol elicits demethylation of estrogen-responsive lactoferrin gene in mouse uterus”, Cancer Res., Vol. 57, (1997), pp. 4356–4359.
  • [121] W.W. Huang, Y. Yin, Q. Bi et al.: “Developmental diethylstilbestrol exposure alters genetic pathways of uterine cytodifferentiation”, Mol. Endocrinol., Vol. 19, (2005), pp. 669–682. [Crossref]
  • [122] D.E. Frigo, K. A. Vigh, A. P. Struckhoff et al.: “Xenobiotic-induced TNF-alpha expression and apoptosis through the p38 MAPK signaling pathway”, Toxicol. Lett., Vol. 155, (2005), pp. 227–238. [Crossref]
  • [123] K. McElreavey and L. Quintana-Murci: ”Y chromosome haplogroups: A correlation with testicular dysgenesis syndrome?”, APMIS, Vol. 111, (2003), pp. 106–114. [Crossref]
  • [124] T. Ogata, R. Yoshida, T. Hasegawa et al.: “Association of cryptorchidism with a specific haplotype of the estrogen receptor α gene: implication for the susceptibility to estrogenic environmental endocrine disruptors”, Horm. Res., Vol. 64, (2005), p. 34.
  • [125] E. Wolff and Ginglinger A: ”Sur la transformation des Poulets males en intersexues par injection d’hormone femelle (folliculine) aux embryons”, Archs Anat. Histol. Embryol., Vol. 20, (1935), pp. 219–278.
  • [126] J.F. Couse and K.S. Korach: ”Estrogen receptor null mice: what have we learned and where will they lead us?”, Endocr. Rev., Vol. 140, (1999), pp. 378–417.
  • [127] J. Takeyama, T. Suzuki, Inoue S. et al.: “Expression and cellular localization of estrogen receptors alpha and beta in the human fetus”, J. Clin. Endocrinol. Metab., Vol. 86, (2001), pp. 2258–2262.
  • [128] M. Nielsen, S. Bjornsdottir, P.E. Hoyer et al.: “Ontogeny of oestrogen receptor alpha in gonads and sex ducts of fetal and newborn mice”, J. Reprod. Fertil., Vol. 118, (2000), pp. 195–204.
  • [129] A. Ferlin and C. Foresta: ”Insulin-like factor 3: a novel circulating hormone of testicular origin in humans”, Ann. N. Y. Acad. Sci., Vol. 1041, (2005), pp. 497–505.
  • [130] J.P. Bonde: ”Occupational hazards to male fecundity”, Reprod. Med. Rev., Vol. 4, (1995), pp. 59–73. http://dx.doi.org/10.1017/S096227990000106X[Crossref]
  • [131] A.B. Wisniewski, S.L. Klein, Y. Lakshmanan et al.: “Exposure to genistein during gestation and lactation demasculinizes the reproductive system in rats”, J. Urol., Vol. 169, (2003), pp. 1582–1586.
  • [132] A.B. Wisniewski, A. Cernetich, J.P. Gearhart et al.: “Perinatal exposure to genistein alters reproductive development and aggressive behavior in male mice”, Physiol. Behav., Vol. 84, (2005), pp. 327–334. [Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.