Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2006 | 1 | 3 | 179-204

Article title

NK cell-based immunotherapies against tumors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Natural killer (NK) cells provide the first line of defence against pathogens and tumors. Their activation status is regulated by pro-inflammatory cytokines and by ligands that either target inhibitory or activating cell surface receptors belonging to the immunoglobulin-like, C-type lectin or natural cytotoxicity receptor families. Apart from non-classical HLA-E, membrane-bound heat shock protein 70 (Hsp70) has been identified as a tumor-specific recognition structure for NK cells expressing high amounts of the C-type lectin receptor CD94, acting as one component of an activating heterodimeric receptor complex. Full-length Hsp70 protein (Hsp70) or the 14-mer Hsp70 peptide T-K-D-N-N-L-L-G-R-F-E-L-S-G (TKD) in combination with pro-inflammatory cytokines enhances the cytolytic activity of NK cells towards Hsp70 membrane-positive tumors. Based on these findings cytokine/TKD-activated NK cells were adoptively transferred in tumor patients. These findings were compared to results of clinical trials using cytokine-activated NK cells.

Publisher

Journal

Year

Volume

1

Issue

3

Pages

179-204

Physical description

Dates

published
1 - 9 - 2006
online
23 - 8 - 2006

Contributors

  • Institute of Medical Biochemistry and Molecular Biology, University of Greifswald, Clinical Center Sauerbruchstraße, D-17487, Greifswald, Germany
author
  • Department of Hematology and Internistic Oncology, University Hospital of Regensburg, D-93053, Regensburg, Germany
  • Department of Hematology and Internistic Oncology, University Hospital of Regensburg, D-93053, Regensburg, Germany

References

  • [1] D.R. Ciocca and S.K. Calderwood: “Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications”, Cell Stress Chaperones, Vol. 10, (2005), pp. 86–103.
  • [2] J. Radons and G. Multhoff: “Heat shock protein 70 (Hsp70) peptide elicits an NK cell-mediated immune response against cancer”, In: R.M. Mohan (Ed.): Research Advances in Cancer, Vol. 5, Global Research Network, Kerala, 2005, pp. 77–86.
  • [3] J. Radons and G. Multhoff: “Immunostimulatory functions of membrane-bound and exported heat shock protein 70”, Exerc. Immunol. Rev., Vol. 11, (2005), pp. 17–33.
  • [4] D.C. DeNagel and S.K. Pierce: “A case for chaperones in antigen processing”, Immunol. Today, Vol. 13, (1992), pp. 86–89.
  • [5] S. Lindquist and E.A. Craig: “The heat-shock proteins”, Annu. Rev. Genet., Vol. 22, (1988), pp. 631–677. [Crossref]
  • [6] F.U. Hartl: “Molecular chaperones in cellular protein folding”, Nature, Vol. 381, (1996), pp. 571–579.
  • [7] J. Nylandsted, K. Brand and M. Jäättelä: “Heat shock protein 70 is required for the survival of cancer cells”, Ann. N. Y. Acad. Sci., Vol. 926, (2000), pp. 122–125. http://dx.doi.org/10.1111/j.1749-6632.2000.tb05605.x[Crossref]
  • [8] M. Jäättelä, D. Wissing, K. Kokholm, T. Kallunki and M. Egeblad: “Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases”, EMBO J., Vol. 17, (1998), pp. 6124–6134.
  • [9] J. Nylandsted, M. Gyrd-Hansen, A. Danielewicz, N. Fehrenbacher, U. Lademann, M. Hoyer-Hansen, E. Weber, G. Multhoff, M. Rohde and M. Jäättelä: “Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization”, J. Exp. Med., Vol. 200, (2004), pp. 425–435.
  • [10] M. Gehrmann, J. Marienhagen, H. Eichholtz-Wirth, E. Fritz, J. Ellwart, Jäättelä, T. Zilch and G. Multhoff: “Dual function of membrane-bound heat shock protein 70 (Hsp70), Bag-4, and Hsp40: protection against radiation-induced effects and target structure for natural killer cells”, Cell Death Differ, Vol. 12, (2005), pp. 38–51.
  • [11] D. Arnold-Schild, D. Hanau, D. Spehner, C. Schmid, H.G. Rammensee, H. de la Salle and H. Schild: “Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells”, J. Immunol., Vol. 162, (1999), pp. 3757–3760.
  • [12] S. Basu, R.J. Binder, T. Ramalingam and P.K. Srivastava: “CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin”, Immunity., Vol. 14, (2001), pp. 303–313. [Crossref]
  • [13] R.J. Binder, D.K. Han and P.K. Srivastava: “CD91: a receptor for heat shock protein gp96”, Nat. Immunol., Vol. 1, (2000), pp. 151–155.
  • [14] R.J. Binder, R. Vatner and P. Srivastava: “The heat-shock protein receptors: some answers and more questions”, Tissue Antigens, Vol. 64, (2004), pp. 442–451.
  • [15] H. Sondermann, T. Becker, M. Mayhew, F. Wieland and F.U. Hartl: “Characterization of a receptor for heat shock protein 70 on macrophages and monocytes”, Biol. Chem., Vol. 381, (2000), pp. 1165–1174.
  • [16] R.J. Binder, N.E. Blachere and P.K. Srivastava: “Heat shock protein-chaperoned peptides but not free peptides introduced into the cytosol are presented effciently by major histocompatibility complex I molecules”, J. Biol. Chem., Vol. 276, (2001), pp. 17163–17171.
  • [17] A.D. Doody, J.T. Kovalchin, M.A. Mihalyo, A.T. Hagymasi, C.G. Drake and A.J. Adler: “Glycoprotein 96 can chaperone both MHC class I-and class II-restricted epitopes for in vivo presentation, but selectively primes CD8+ T cell effector function”, J. Immunol., Vol. 172, (2004), pp. 6087–6092.
  • [18] H. Schild, D. Arnold-Schild, E. Lammert and H.G. Rammensee: “Stress proteins and immunity mediated by cytotoxic T lymphocytes”, Curr. Opin. Immunol., Vol. 11, (1999), pp. 109–113. [Crossref]
  • [19] H. Singh-Jasuja, R.E. Toes, P. Spee, C. Münz, N. Hilf, S.P. Schoenberger, P. Ricciardi-Castagnoli, J. Neefjes, H.G. Rammensee, D. Arnold-Schild and H. Schild: “Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis”, J. Exp. Med., Vol. 191, (2000), pp. 1965–1974.
  • [20] P.K. Srivastava, A. Menoret, S. Basu, R.J. Binder and K.L. McQuade: “Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world”, Immunity, Vol. 8, (1998), pp. 657–665. [Crossref]
  • [21] A.D. Wells and M. Malkovsky: “Heat shock proteins, tumor immunogenicity and antigen presentation: an integrated view”, Immunol. Today, Vol. 21, (2000), pp. 129–132.
  • [22] R.J. Binder, M.L. Harris, A. Menoret and P.K. Srivastava: “Saturation, competition, and specificity in interaction of heat shock proteins (hsp) gp96, hsp90, and hsp70 with CD11b+ cells”, J. Immunol., Vol. 165, (2000), pp. 2582–2587. [Crossref]
  • [23] C. Habich, K. Baumgart, H. Kolb and V. Burkart: “The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins”, J. Immunol., Vol. 168, (2002), pp. 569–576. [Crossref]
  • [24] R.M. Vabulas, P. Ahmad-Nejad, C. Da Costa, T. Miethke, C.J. Kirschning, H. Hacker and H. Wagner: “Endocytosed HSP60s use Toll-like receptor 2 (TLR2) and TLR4 to activate the Toll/interleukin-1 receptor signaling pathway in innate immune cells”, J. Biol. Chem., Vol. 276, (2001), pp. 31332–31339.
  • [25] A. Asea, S.K. Kraeft, E.A. Kurt-Jones, M.A. Stevenson, L.B. Chen, R.W. Finberg, G.C. Koo and S.K. Calderwood: “HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine”, Nat. Med., Vol. 6, (2000), pp. 435–442.
  • [26] A. Asea, M. Rehli, E. Kabingu, J.A. Boch, O. Bare, P.E. Auron, M.A. Stevenson and S.K. Calderwood: “Novel signal transduction pathway utilized by extracellular HSP70: role of Toll-like receptor (TLR) 2 and TLR4”, J. Biol. Chem., Vol. 277, (2002), pp. 15028–15034. [Crossref]
  • [27] R.M. Vabulas, S. Braedel, N. Hilf, H. Singh-Jasuja, S. Herter, P. Ahmad-Nejad, C.J. Kirschning, C. Da Costa, H.G. Rammensee, H. Wagner and H. Schild: “The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway”, J. Biol. Chem., Vol. 277, (2002), pp. 20847–20853. [Crossref]
  • [28] T. Becker, F.U. Hartl and F. Wieland: “CD40, an extracellular receptor for binding and uptake of Hsp70 peptide complexes”, J. Cell Biol., Vol. 158, (2002), pp. 1277–1285.
  • [29] Y. Wang, C.G. Kelly, J.T. Karttunen, T. Whittall, P.J. Lehner, L. Duncan, P. MacAry, J.S. Younson, M. Singh, W. Oehlmann, G. Cheng, L. Bergmeier and T. Lehner: “CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines”, Immunity, Vol. 15, (2001), pp. 971–983. [Crossref]
  • [30] T. Nakamura, J. Hinagata, T. Tanaka, T. Imanishi, Y. Wada, T. Kodama and T. Doi: “HSP90, HSP70, and GAPDH directly interact with the cytoplasmic domain of macrophage scavenger receptors”, Biochem. Biophys. Res. Commun., Vol. 290, (2002), pp. 858–864.
  • [31] R.J. Binder, D. Karimeddini and P.K. Srivastava: “Adjuvanticity of alpha 2-macroglobulin, an independent ligand for the heat shock protein receptor CD91”, J. Immunol., Vol. 166, (2001), pp. 4968–4972.
  • [32] R.J. Binder and P.K. Srivastava: “Essential role of CD91 in re-presentation of gp96-chaperoned peptides”, Proc. Natl. Acad. Sci. U. S. A, Vol. 101, (2004), pp. 6128–6133.
  • [33] B. Berwin, J.P. Hart, S. Rice, C. Gass, S.V. Pizzo, S.R. Post and C.V. Nicchitta: “Scavenger receptor-A mediates gp96/GRP94 and calreticulin internalization by antigen-presenting cells”, EMBO J., Vol. 22, (2003), pp. 6127–6136. [Crossref]
  • [34] R. Haworth, N. Platt, S. Keshav, D. Hughes, E. Darley, H. Suzuki, Y. Kurihara, T. Kodama and S. Gordon: “The macrophage scavenger receptor type A is expressed by activated macrophages and protects the host against lethal endotoxic shock”, J. Exp. Med., Vol. 186, (1997), pp. 1431–1439. [Crossref]
  • [35] Y. Delneste, G. Magistrelli, J. Gauchat, J. Haeuw, J. Aubry, K. Nakamura, N. Kawakami-Honda, L. Goetsch, T. Sawamura, J. Bonnefoy and P. Jeannin: “Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation”, Immunity, Vol. 17, (2002), pp. 353–362. [Crossref]
  • [36] J.R. Theriault, S.S. Mambula, T. Sawamura, M.A. Stevenson and S.K. Calderwood: “Extracellular HSP70 binding to surface receptors present on antigen presenting cells and endothelial/epithelial cells”, FEBS Lett., Vol. 579, (2005), pp. 1951–1960.
  • [37] P. Matzinger: “The danger model: a renewed sense of self”, Science, Vol. 296, (2002), pp. 301–305.
  • [38] M.A. Bausero, R. Gastpar, G. Multhoff and A. Asea: “Alternative mechanism by which IFN-γ enhances tumor recognition: active release of Hsp72”, J. Immunol., Vol. 175, (2005), pp. 2900–2912.
  • [39] R. Gastpar, M. Gehrmann, M.A. Bausero, A. Asea, C. Gross, J.A. Schroeder and G. Multhoff: “Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells”, Cancer Res., Vol. 65, (2005), pp. 5238–5247. [Crossref]
  • [40] G.I. Lancaster and M.A. Febbraio: “Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins”, J. Biol. Chem., Vol. 280, (2005), pp. 23349–23355.
  • [41] T. Lehner, Y. Wang, T. Whittall, E. McGowan, C.G. Kelly and M. Singh: “Functional domains of HSP70 stimulate generation of cytokines and chemokines, maturation of dendritic cells and adjuvanticity”, Biochem. Soc. Trans., Vol. 32, (2004), pp. 629–632.
  • [42] Y. Wang, C.G. Kelly, M. Singh, E.G. McGowan, A.S. Carrara, L.A. Bergmeier and T. Lehner: “Stimulation of Th1-polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70”, J. Immunol., Vol. 169, (2002), pp. 2422–2429.
  • [43] O.S. Birk, S.L. Gur, D. Elias, R. Margalit, F. Mor, P. Carmi, J. Bockova, D.M. Altmann and I.R. Cohen: “The 60-kDa heat shock protein modulates allograft rejection”, Proc. Natl. Acad. Sci. U. S. A, Vol. 96, (1999), pp. 5159–5163. [Crossref]
  • [44] G. Trinchieri: “Biology of natural killer cells”, Adv. Immunol., Vol. 47, (1989), pp. 187–376.
  • [45] L.L. Lanier, J.J. Ruitenberg and J.H. Phillips: “Functional and biochemical analysis of CD16 antigen on natural killer cells and granulocytes”, J. Immunol., Vol. 141, (1988), pp. 3478–3485.
  • [46] L.L. Lanier, B. Corliss, J. Wu and J.H. Phillips: “Association of DAP12 with activating CD94/NKG2C NK cell receptors”, Immunity, Vol. 8, (1998), pp. 693–701. [Crossref]
  • [47] A. Moretta, C. Bottino, M. Vitale, D. Pende, C. Cantoni, M.C. Mingari, R. Biassoni and L. Moretta: “Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis”, Annu. Rev. Immunol., Vol. 19, (2001), pp. 197–223. [Crossref]
  • [48] E.O. Long: “Regulation of immune responses through inhibitory receptors”, Annu. Rev. Immunol., Vol. 17, (1999), pp. 875–904. [Crossref]
  • [49] H.G. Ljunggren and K. Karre: “In search of the ‘missing self’: MHC molecules and NK cell recognition”, Immunol. Today, Vol. 11, (1990), pp. 237–244.
  • [50] S. Bauer, V. Groh, J. Wu, A. Steinle, J.H. Phillips, L.L. Lanier and T. Spies: “Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA”, Science, Vol. 285, (1999), pp. 727–729.
  • [51] D. Cosman, J. Mullberg, W Fanslow, R. Armitage, W. Chin and I. Cassiano: “The human cytomegalivirus (HCMV) glycoprotein, UL16, binds to the MHC class Irelated protein, MICB/PERB11, and to two novel, MHC class I related molecules ULBP1 and ULBP2”, FASEB J., Vol. 14, (2004), pp. 1018–1023.
  • [52] C. Bottino, L. Moretta and A. Moretta: “NK cell activating receptors and tumor recognition in humans”, Curr. Top. Microbiol. Immunol., Vol. 298, (2006), pp. 175–182.
  • [53] J.S. Orange and Z.K. Ballas: “Natural killer cells in human health and disease”, Clin. Immunol., Vol. 118, (2006), pp. 1–10.
  • [54] S.S. Farag, T.A. Fehniger, L. Ruggeri, A. Velardi and M.A. Caligiuri: “Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect”, Blood, Vol. 100, (2002), pp. 1935–1947. [Crossref]
  • [55] V.M. Braud, D.S. Allan, C.A. O’Callaghan, K. Soderstrom, A. D’Andrea, G.S. Ogg, S. Lazetic, N.T. Young, J.I. Bell, J.H. Phillips, L.L. Lanier and A.J. McMichael: “HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C”, Nature, Vol. 391, (1998), pp. 795–799.
  • [56] J. Michaëlsson, C. Teixeira de Matos, A. Achour, L.L. Lanier, K. Kaerre and K. Söderström: “A signal peptide derived from hsp60 binds HLA-E and interferes with CD94/NKG2A recognition”, J. Exp. Med., Vol. 196, (2002), pp. 1403–1414. [Crossref]
  • [57] H.D. Hickman-Miller and W.H. Hildebrand: “The immune response under stress: the role of HSP-derived peptides”, Trends Immunol., Vol. 25, (2004), pp. 427–433. [Crossref]
  • [58] C. Gross, D. Hansch, R. Gastpar and G. Multhoff: “Interaction of heat shock protein 70 peptide with NK cells involves the NK receptor CD94”, Biol. Chem., Vol. 384, (2003), pp. 267–279.
  • [59] C. Gross, I.G. Schmidt-Wolf, S. Nagaraj, R. Gastpar, J. Ellwart, L.A. Kunz-Schughart and G. Multhoff: “Heat shock protein 70-reactivity is associated with increased cell surface density of CD94/CD56 on primary natural killer cells”, Cell Stress Chaperones, Vol. 8, (2003), pp. 348–360.
  • [60] C. Botzler, G. Li, R.D. Issels and G. Multhoff: “Definition of extracellular localized epitopes of Hsp70 involved in an NK immune response”, Cell Stress Chaperones, Vol. 3, (1998), pp. 6–11.
  • [61] G. Multhoff, L. Mizzen, C.C. Winchester, C.M. Milner, S. Wenk, G. Eissner, H.H. Kampinga, B. Laumbacher and J. Johnson: “Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells”, Exp. Hematol., Vol. 27, (1999), pp. 1627–1636.
  • [62] C. Massa, C. Guiducci, I. Arioli, M. Parenza, M.P. Colombo and C. Melani: “Enhanced efficacy of tumor cell vaccines transfected with secretable hsp70”, Cancer Res., Vol. 64, (2004), pp. 1502–1508. [Crossref]
  • [63] G. Multhoff, K. Pfister, C. Botzler, A. Jordan, R. Scholz, H. Schmetzer, R. Burgstahler and W. Hiddemann: “Adoptive transfer of human natural killer cells in mice with severe combined immunodeficiency inhibits growth of Hsp70-expressing tumors”, Int. J. Cancer, Vol. 88, (2000), pp. 791–797.
  • [64] C. Gross, W. Koelch, A. DeMaio, N. Arispe and G. Multhoff: “Cell surface-bound heat shock protein 70 (Hsp70) mediates perforin-independent apoptosis by specific binding and uptake of granzyme B”, J. Biol. Chem., Vol. 278, (2003), pp. 41173–41181. [Crossref]
  • [65] X. Chen, Q. Tao, H. Yu, L. Zhang and X. Cao: “Tumor cell membrane-bound heat shock protein 70 elicits antitumor immunity”, Immunol. Lett., Vol. 84, (2002), pp. 81–87. [Crossref]
  • [66] G. Multhoff, C. Botzler, M. Wiesnet, E. Muller, T. Meier, W. Wilmanns and R.D. Issels: “A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells”, Int. J. Cancer, Vol. 61, (1995), pp. 272–279.
  • [67] G. Multhoff, C. Botzler, M. Wiesnet, G. Eissner and R. Issels: “CD3-large granular lymphocytes recognize a heat-inducible immunogenic determinant associated with the 72-kD heat shock protein on human sarcoma cells”, Blood, Vol. 86, (1995), pp. 1374–1382.
  • [68] M. Gehrmann, H. Schmetzer, G. Eissner, T. Haferlach, W. Hiddemann and G. Multhoff: “Membrane-bound heat shock protein 70 (Hsp70) in acute myeloid leukemia: a tumor specific recognition structure for the cytolytic activity of autologous NK cells”, Haematologica, Vol. 88, (2003), pp. 474–476.
  • [69] C. Botzler, H.J. Kolb, R.D. Issels and G. Multhoff: “Noncytotoxic alkyllysophospholipid treatment increases sensitivity of leukemic K562 cells to lysis by natural killer (NK) cells”, Int. J. Cancer, Vol. 65, (1996), pp. 633–638.
  • [70] M. Gehrmann, K. Pfister, P. Hutzler, R. Gastpar, B. Margulis and G. Multhoff: “Effects of antineoplastic agents on cytoplasmic and membrane-bound heat shock protein 70 (Hsp70) levels”, Biol. Chem., Vol. 383, (2002), pp. 1715–1725.
  • [71] M. Gehrmann, M. Brunner, K. Pfister, A. Reichle, E. Kremmer and G. Multhoff: “Differential up-regulation of cytosolic and membrane-bound heat shock protein 70 in tumor cells by anti-inflammatory drugs”, Clin. Cancer Res., Vol. 10, (2004), pp. 3354–3364.
  • [72] V. Milani and E. Noessner: “Effects of thermal stress on tumor antigenicity and recognition by immune effector cells”, Cancer Immunol. Immunother., Vol. 55, (2006), pp. 312–319. [Crossref]
  • [73] M. Korbelik, J. Sun and I. Cecic: “Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response”, Cancer Res., Vol. 65, (2005), pp. 1018–1026.
  • [74] B.K. Shin, H. Wang, A.M. Yim, F. Le Naour, F. Brichory, J.H. Jang, R. Zhao, E. Puravs, J. Tra, C.W. Michael, D.E. Misek and S.M. Hanash: “Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function”, J. Biol. Chem., Vol. 278, (2003), pp. 7607–7616. [Crossref]
  • [75] L. Pilla, P. Squarcina, J. Coppa, V. Mazzaferro, V. Huber, D. Pende, C. Maccalli, G. Sovena, L. Mariani, C. Castelli, G. Parmiani and L. Rivoltini: “Natural killer and NK-like T-cell activation in colorectal carcinoma patients treated with autologous tumor-derived heat shock protein 96”, Cancer Res., Vol. 65, (2005), pp. 3942–3949. [Crossref]
  • [76] J.A. Trapani, M.J. Smyth, V.A. Apostolidis, M. Dawson and K.A. Browne: “Granule serine proteases are normal nuclear constituents of natural killer cells”, J. Biol. Chem., Vol. 269, (1994), pp. 18359–18365.
  • [77] R. Dressel, S.M. Raja, S. Höning, T. Seidler, C.J. Froelich, K. von Figura and E. Günther: “Granzyme-mediated cytotoxicity does not involve the mannose 6-phosphate receptors on target cells”, J. Biol. Chem., Vol. 279, (2004), pp. 20200–20210.
  • [78] F.C. Kurschus, R. Bruno, E. Fellows, C.S. Falk and D.E. Jenne: “Membrane receptors are not required to deliver granzyme B during killer cell attack”, Blood, Vol. 105, (2005), pp. 2049–2058. [Crossref]
  • [79] J.A. Trapani, V.R. Sutton, K.Y. Thia, Y.Q. Li, C.J. Froelich, D.A. Jans, M.S. Sandrin and K.A. Browne: “A clathrin/dynamin-and mannose-6-phosphate receptorindependent pathway for granzyme B-induced cell death”, J. Cell Biol., Vol. 160, (2003), pp. 223–233. [Crossref]
  • [80] G. Berke: “The CTL’s kiss of death”, Cell, Vol. 81, (1995), pp. 9–12. [Crossref]
  • [81] C.J. Froelich, V.M. Dixit and X. Yang: “Lymphocyte granule-mediated apoptosis: matters of viral mimicry and deadly proteases”, Immunol. Today, Vol. 19, (1998), pp. 30–36.
  • [82] L. Shi, C.M. Kam, J.C. Powers, R. Aebersold and A.H. Greenberg: “Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions”, J. Exp. Med., Vol. 176, (1992), pp. 1521–1529. [Crossref]
  • [83] L. Shi, R.P. Kraut, R. Aebersold and A.H. Greenberg: “A natural killer cell granule protein that induces DNA fragmentation and apoptosis”, J. Exp. Med., Vol. 175, (1992), pp. 553–566. [Crossref]
  • [84] S. Shresta, T.A. Graubert, D.A. Thomas, S.Z. Raptis and T.J. Ley: “Granzyme A initiates an alternative pathway for granule-mediated apoptosis”, Immunity, Vol. 10, (1999), pp. 595–605. [Crossref]
  • [85] J. Tschopp and M. Nabholz: “Perforin-mediated target cell lysis by cytolytic T lymphocytes”, Annu. Rev. Immunol., Vol. 8, (1990), pp. 279–302. http://dx.doi.org/10.1146/annurev.iy.08.040190.001431[Crossref]
  • [86] P.J. Beresford, M. Jaju, R.S. Friedman, M.J. Yoon and J. Liebermann: “A role for heat shock protein 27 in CTL-mediated cell death”, J. Immunol., Vol. 161, (1998), pp. 161–167.
  • [87] N. Arispe and A. De Maio: “ATP and ADP modulate a cation channel formed by Hsc70 in acidic phospholipid membranes”, J. Biol. Chem., Vol. 275, (2000), pp. 30839–30843.
  • [88] N. Arispe, M. Doh, O. Simakova, B. Kurganov and A. De Maio: “Hsc70 and Hsp70 interact with phosphatidylserine on the surface of PC12 cells resulting in a decrease of viability”, FASEB J., Vol. 18, (2004), pp. 1636–1645. [Crossref]
  • [89] A.H. Broquet, G. Thomas, J. Masliah, G. Trugnan and M. Bachelet: “Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release”, J. Biol. Chem., Vol. 278, (2003), pp. 21601–21606.
  • [90] P.J. Kuppen, A. Gorter, M. Hagenaars, L.E. Jonges, K.M. Giezeman-Smits, J.F. Nagelkerke, G. Fleuren and C.J. van de Velde: “Role of NK cells in adoptive immunotherapy of metastatic colorectal cancer in a syngeneic rat model”, Immunol. Rev., Vol. 184, (2001), pp. 236–243.
  • [91] S. Yasumura, W.C. Lin, H. Hirabayashi, N.L. Vujanovic, R.B. Herberman and T.L. Whiteside: “Immunotherapy of liver metastases of human gastric carcinoma with interleukin 2-activated natural killer cells”, Cancer Res., Vol. 54, (1994), pp. 3808–3816.
  • [92] N.L. Vujanovic, S. Yasumura, H. Hirabayashi, W.C. Lin, S. Watkins, R.B. Herberman and T.L. Whiteside: “Antitumor activities of subsets of human IL-2-activated natural killer cells in solid tissues”, J. Immunol., Vol. 154, (1995), pp. 281–289.
  • [93] R.E. Schwarz, N.L. Vujanovic and J.C. Hiserodt: “Enhanced antimetastatic activity of lymphokine-activated killer cells purified and expanded by their adherence to plastic”, Cancer Res., Vol. 49, (1989), pp. 1441–1446.
  • [94] T.L. Whiteside, M.W. Sung, S. Nagashima, K. Chikamatsu, K. Okada and N.L. Vujanovic: “Human tumor antigen-specific T lymphocytes and interleukin-2-activated natural killer cells: comparisons of antitumor effects in vitro and in vivo”, Clin. Cancer Res., Vol. 4, (1998), pp. 1135–1145.
  • [95] M. Zeis, L. Uharek, B. Glass, T. Gaska, W. Gassmann and W. Mueller-Ruchholtz: “Induction of graft-versus-leukemia (GVL) activity in murine leukemia models after IL-2 pretreatment of syngeneic and allogeneic bone marrow grafts”, Bone Marrow Transplant., Vol. 14, (1994), pp. 711–715.
  • [96] L. Uharek, M. Zeis, B. Glass, J. Steinmann, P. Dreger, W. Gassmann, N. Schmitz and W. Muller-Ruchholtz: “High lytic activity against human leukemia cells after activation of allogeneic NK cells by IL-12 and IL-2”, Leukemia, Vol. 10, (1996), pp. 1758–1764.
  • [97] M. Zeis, L. Uharek, B. Glass, J. Steinmann, P. Dreger, W. Gassmann and N. Schmitz: “Allogeneic MHC-mismatched activated natural killer cells administered after bone marrow transplantation provide a strong graft-versus-leukaemia effect in mice”, Br. J. Haematol., Vol. 96, (1997), pp. 757–761. [Crossref]
  • [98] L. Uharek, B. Glass, T. Gaska, M. Zeiss, W. Gassmann, H. Loffler and W. Muller-Ruchholtz: “Natural killer cells as effector cells of graft-versus-leukemia activity in a murine transplantation model”, Bone Marrow Transplant., Vol. 12, Suppl 3, (1993), pp. S57–S60.
  • [99] M. Zeis, L. Uharek, B. Glass, T. Gaska, J. Steinmann, W. Gassmann, H. Loffler and W. Muller-Ruchholtz: “Allogeneic NK cells as potent antileukemic effector cells after allogeneic bone marrow transplantation in mice”, Transplantation, Vol. 59, (1995), pp. 1734–1736. [Crossref]
  • [100] O. Penack, C. Gentilini, L. Fischer, A.M. Asemissen, C. Scheibenbogen, E. Thiel and L. Uharek: “CD56dimCD16neg cells are responsible for natural cytotoxicity against tumor targets”, Leukemia, Vol. 19, (2005), pp. 835–840. [Crossref]
  • [101] S. Brandau, J. Riemensberger, M. Jacobsen, D. Kemp, W. Zhao, X. Zhao, D. Jocham, T.L. Ratliff and A. Bohle: “NK cells are essential for effective BCG immunotherapy”, Int. J. Cancer, Vol. 92, (2001), pp. 697–702.
  • [102] S. Brandau and A. Bohle: “Activation of natural killer cells by Bacillus Calmette-Guerin”, Eur. Urol., Vol. 39, (2001), pp. 518–524.
  • [103] T. Tonn, S. Becker, R. Esser, D. Schwabe and E. Seifried: “Cellular immunotherapy of malignancies using the clonal natural killer cell line NK-92”, J. Hematother. Stem Cell Res., Vol. 10, (2001), pp. 535–544. [Crossref]
  • [104] U. Koehl, J. Sorensen, R. Esser, S. Zimmermann, H.P. Gruttner, T. Tonn, C. Seidl, E. Seifried, T. Klingebiel and D. Schwabe: “IL-2 activated NK cell immunotherapy of three children after haploidentical stem cell transplantation”, Blood Cells Mol. Dis., Vol. 33, (2004), pp. 261–266.
  • [105] U. Koehl, R. Esser, S. Zimmermann, T. Tonn, R. Kotchetkov, T. Bartling, J. Sorensen, H.P. Gruttner, P. Bader, E. Seifried, H. Martin, P. Lang, J.R. Passweg, T. Klingebiel and D. Schwabe: “Ex vivo expansion of highly purified NK cells for immunotherapy after haploidentical stem cell transplantation in children”, Klin. Padiatr., Vol. 217, (2005), pp. 345–350.
  • [106] T.L. Whiteside, N.L. Vujanovic and R.B. Herberman: “Natural killer cells and tumor therapy”, Curr. Top. Microbiol. Immunol., Vol. 230, (1998), pp. 221–244.
  • [107] H. Rabinowich, D. Vitolo, S. Altarac, R.B. Herberman and T.L. Whiteside: “Role of cytokines in the adoptive immunotherapy of an experimental model of human head and neck cancer by human IL-2-activated natural killer cells”, J. Immunol., Vol. 149, (1992), pp. 340–349.
  • [108] R.B. Herberman: “Cancer immunotherapy with natural killer cells”, Semin. Oncol., Vol. 29, (2002), pp. 27–30.
  • [109] P.H. Basse, T.L. Whiteside, W. Chambers and R.B. Herberman: “Therapeutic activity of NK cells against tumors”, Int. Rev. Immunol., Vol. 20, (2001), pp. 439–501. [Crossref]
  • [110] K. Koda, N. Saito, K. Oda, K. Seike, E. Kondo, M. Ishizuka, N. Takiguchi and M. Miyazaki: “Natural killer cell activity and distant metastasis in rectal cancers treated surgically with and without neoadjuvant chemoradiotherapy”, J. Am. Coll. Surg., Vol. 197, (2003), pp. 254–260.
  • [111] E. Kondo, K. Koda, N. Takiguchi, K. Oda, K. Seike, M. Ishizuka and M. Miyazaki: “Preoperative natural killer cell activity as a prognostic factor for distant metastasis following surgery for colon cancer”, Dig. Surg., Vol. 20, (2003), pp. 445–451.
  • [112] P.A. Albertsson, P.H. Basse, M. Hokland, R.H. Goldfarb, J.F. Nagelkerke, U. Nannmark and P.J. Kuppen: “NK cells and the tumour microenvironment: implications for NK-cell function and anti-tumour activity”, Trends Immunol., Vol. 24, (2003), pp. 603–609. [Crossref]
  • [113] S.A. Rosenberg, M.T. Lotze, J.C. Yang, S.L. Topalian, A.E. Chang, D.J. Schwartzentruber, P. Aebersold, S. Leitman, W.M. Linehan, C.A. Seipp, D.E. White and S.M. Steinberg: “Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer”, J. Natl. Cancer Inst., Vol. 85, (1993), pp. 622–632. [Crossref]
  • [114] S.A. Rosenberg, J.C. Yang, D.J. Schwartzentruber, P. Hwu, F.M. Marincola, S.L. Topalian, C.A. Seipp, J.H. Einhorn, D.E. White and S.M. Steinberg: “Prospective randomized trial of the treatment of patients with metastatic melanoma using chemotherapy with cisplatin, dacarbazine, and tamoxifen alone or in combination with interleukin-2 and interferon alfa-2b”, J. Clin. Oncol., Vol. 17, (1999), pp. 968–975.
  • [115] J.E. Cortes, H.M. Kantarjian, S. O’Brien, F. Giles, M.J. Keating, E.J. Freireich and E.H. Estey: “A pilot study of interleukin-2 for adult patients with acute myelogenous leukemia in first complete remission”, Cancer, Vol. 85, (1999), pp. 1506–1513. [Crossref]
  • [116] R.J. Soiffer, C. Murray, C. Shapiro, H. Collins, S. Chartier, S. Lazo and J. Ritz: “Expansion and manipulation of natural killer cells in patients with metastatic cancer by low-dose continuous infusion and intermittent bolus administration of interleukin 2”, Clin. Cancer Res., Vol. 2, (1996), pp. 493–499.
  • [117] C. Moser, C. Schmidbauer, U. Gürtler, C. Gross, M. Gehrmann, G. Thonigs, K. Pfister and G. Multhoff: “Inhibition of tumor growth in mice with severe combined immunodeficiency is mediated by heat shock protein 70 (Hsp70)-peptide-activated, CD94 positive natural killer cells”, Cell Stress. Chaperones., Vol. 7, (2002), pp. 365–373. [Crossref]
  • [118] S. Stangl, A. Wortmann, U. Guertler and G. Multhoff: “Control of metastasized pancreatic carcinomas in SCID/beige mice with human IL-2/TKD-activated NK cells”, J. Immunol., Vol. 176, (2006), pp. 6270–6276.
  • [119] Q. Yang, M.E. Hokland, J.L. Bryant, Y. Zhang, U. Nannmark, S.C. Watkins, R.H. Goldfarb, R.B. Herberman and P.H. Basse: “Tumor-localization by adoptively transferred, interleukin-2-activated NK cells leads to destruction of well-established lung metastases”, Int. J. Cancer, Vol. 105, (2003), pp. 512–519.
  • [120] S.W. Krause, R. Gastpar, R. Andreesen, C. Gross, H. Ullrich, G. Thonigs, K. Pfister and G. Multhoff: “Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase I trial”, Clin. Cancer Res., Vol. 10, (2004), pp. 3699–3707.
  • [121] Ö. Canöz, O. Belenli and T.E. Patiroglu: “General features of gastric carcinomas and comparison of HSP70 and NK cell immunoreactivity with prognostic factors”, Pathol. Oncol. Res., Vol. 8, (2002), pp. 262–269. [Crossref]
  • [122] M. deMagalhaes-Silverman, A. Donnenberg, B. Lembersky, E. Elder, J. Lister, W. Rybka, T. Whiteside and E. Ball: “Posttransplant adoptive immunotherapy with activated natural killer cells in patients with metastatic breast cancer”, J. Immunother., Vol. 23, (2000), pp. 154–160. [Crossref]
  • [123] P.H. Basse, T.L. Whiteside and R.B. Herberman: “Use of activated natural killer cells for tumor immunotherapy in mouse and human”, Methods Mol. Biol., Vol. 121, (2000), pp. 81–94.
  • [124] C. Frohn, C. Doehn, C. Durek, A. Bohle, P. Schlenke, D. Jocham and H. Kirchner: “Feasibility of the adoptive transfusion of allogenic human leukocyte antigen-matched natural killer cells in patients with renal cell carcinoma”, J. Immunother., Vol. 23, (2000), pp. 499–504. [Crossref]
  • [125] T. Hercend, F. Farace, D. Baume, F. Charpentier, J.P. Droz, F. Triebel and B. Escudier: “Immunotherapy with lymphokine-activated natural killer cells and recombinant interleukin-2: a feasibility trial in metastatic renal cell carcinoma”, J. Biol. Response Mod., Vol. 9, (1990), pp. 546–555.
  • [126] E. Ishikawa, K. Tsuboi, K. Saijo, H. Harada, S. Takano, T. Nose and T. Ohno: “Autologous natural killer cell therapy for human recurrent malignant glioma”, Anticancer Res., Vol. 24, (2004), pp. 1861–1871.
  • [127] J.R. Passweg, M. Stern, U. Koehl, L. Uharek and A. Tichelli: “Use of natural killer cells in hematopoetic stem cell transplantation”, Bone Marrow Transplant., Vol. 35, (2005), pp. 637–643.
  • [128] F. Aversa, A. Terenzi, R. Felicini, A. Carotti, F. Falcinelli, A. Tabilio, A. Velardi and M.F. Martelli: “Haploidentical stem cell transplantation for acute leukemia”, Int. J. Hematol., Vol. 76, Suppl 1, (2002), pp. 165–168. http://dx.doi.org/10.1007/BF03165238[Crossref]
  • [129] C.Y. Koh, L.A. Welniak and W.J. Murphy: “Adoptive cellular immunotherapy: NK cells and bone marrow transplantation”, Histol. Histopathol., Vol. 15, (2000), pp. 1201–1210.
  • [130] R.J. Jones: “Biology and treatment of chronic myeloid leukemia”, Curr. Opin. Oncol., Vol. 9, (1997), pp. 3–7. [Crossref]
  • [131] E. Jourdan, D. Maraninchi, J. Reiffers, E. Gluckman, B. Rio, J.P. Jouet, M. Michallet, L. Molina, E. Archimbaud, J.L. Harousseau, N. Ifrah, M. Attal, F. Guilhot, M. Kuentz, D. Guyotat, J.L. Pico, C. Dauriac, M. Legros, F. Dreyfus, P. Bordigoni, V. Leblond, N. Gratecos, B. Varet, C. Auzanneau and D. Blaise: “Early allogeneic transplantation favorably influences the outcome of adult patients suffering from acute myeloid leukemia. Societe Francaise de Greffe de Moelle (SFGM)”, Bone Marrow Transplant., Vol. 19, (1997), pp. 875–881.
  • [132] L.F. Verdonck, A.W. Dekker, H.M. Lokhorst, E.J. Petersen and H.K. Nieuwenhuis: “Allogeneic versus autologous bone marrow transplantation for refractory and recurrent low-grade non-Hodgkin’s lymphoma”, Blood, Vol. 90, (1997), pp. 4201–4205.
  • [133] K.G. Lerner, G.F. Kao, R. Storb, C.D. Buckner, R.A. Clift and E.D. Thomas: “Histopathology of graft-vs.-host reaction (GvHR) in human recipients of marrow from HL-A-matched sibling donors”, Transplant. Proc., Vol. 6, (1974), pp. 367–371.
  • [134] H.J. Kolb and E. Holler: “Adoptive immunotherapy with donor lymphocyte transfusions”, Curr. Opin. Oncol., Vol. 9, (1997), pp. 139–145. http://dx.doi.org/10.1097/00001622-199703000-00006[Crossref]
  • [135] L.S. de, V, N. Riche, G. Dorothe and M. Bruley-Rosset: “CD8+ cytotoxic T cell repertoire implicated in grafts-versus-leukemia effect in a murine bone marrow transplantation model”, Bone Marrow Transplant., Vol. 23, (1999), pp. 951–958.
  • [136] E. Holler, B. Ertl, R. Hintermeier-Knabe, M.G. Roncarolo, G. Eissner, F. Mayer, P. Fraunberger, U. Behrends, W. Pfannes, H.J. Kolb and W. Wilmanns: “Inflammatory reactions induced by pretransplant conditioning - an alternative target for modulation of acute GvHD and complications following allogeneic bone marrow transplantation?”, Leuk. Lymphoma, Vol. 25, (1997), pp. 217–224.
  • [137] C. Ibisch, G. Gallot, R. Vivien, E. Diez, F. Jotereau, R. Garand and H. Vie: “Recognition of leukemic blasts by HLA-DPB1-specific cytotoxic T cell clones: a perspective for adjuvant immunotherapy post-bone marrow transplantation”, Bone Marrow Transplant., Vol. 23, (1999), pp. 1153–1159.
  • [138] B.D. Johnson, E.E. Becker and R.L. Truitt: “Graft-vs.-host and graft-vs.-leukemia reactions after delayed infusions of donor T-subsets”, Biol. Blood Marrow Transplant., Vol. 5, (1999), pp. 123–132.
  • [139] S. Slawin, E. Naparstek, A. Nagler, A. Ackerstein, J. Kapelushnik and R. Or: “Allogeneic cell therapy for relapsed leukemia after bone marrow transplantation with donor peripheral blood lymphocytes”, Exp. Hematol., Vol. 23, (1995), pp. 1553–1562.
  • [140] M. Zeis, L. Uharek, B. Glass, W. Vosskotter, P. Dreger, N. Schmitz and J. Steinmann: “Eradication of residual disease by administration of leukemia-specific T cells after experimental allogeneic bone marrow transplantation”, Exp. Hematol., Vol. 26, (1998), pp. 1068–1073.
  • [141] Y. Yan, P. Steinherz, H.G. Klingemann, D. Dennig, B.H. Childs, J. McGuirk and R.J. O’Reilly: “Antileukemia activity of a natural killer cell line against human leukemias”, Clin. Cancer Res., Vol. 4, (1998), pp. 2859–2868.
  • [142] B. Glass, L. Uharek, M. Zeis, H. Loeffler, W. Mueller-Ruchholtz and W. Gassmann: “Graft-versus-leukaemia activity can be predicted by natural cytotoxicity against leukaemia cells”, Br. J. Haematol., Vol. 93, (1996), pp. 412–420. [Crossref]
  • [143] S.S. Farag, T. Fehniger, L. Ruggeri, A. Velardi and M.A. Caligiuri: “Natural killer cells: biology and application in stem-cell transplantation”, Cytotherapy, Vol. 4, (2002), pp. 445–446. [Crossref]
  • [144] L. Ruggeri, M. Capanni, M. Casucci, I. Volpi, A. Tosti, K. Perruccio, E. Urbani, R.S. Negrin, M.F. Martelli and A. Velardi: “Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation”, Blood, Vol. 94, (1999), pp. 333–339.
  • [145] L. Ruggeri, M. Capanni, E. Urbani, K. Perruccio, W.D. Shlomchik, A. Tosti, S. Posati, D. Rogaia, F. Frassoni, F. Aversa, M.F. Martelli and A. Velardi: “Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants”, Science, Vol. 295, (2002), pp. 2097–2100.
  • [146] L. Ruggeri, M. Capanni, M.F. Martelli and A. Velardi: “Cellular therapy: exploiting NK cell alloreactivity in transplantation”, Curr. Opin. Hematol., Vol. 8, (2001), pp. 355–359. [Crossref]
  • [147] M.A. Caligiuri, A. Velardi, D.A. Scheinberg and I.M. Borrello: “Immunotherapeutic approaches for hematologic malignancies”, Hematology. Am. Soc. Hematol. Educ. Program, (2004), pp. 337-353. [Crossref]
  • [148] A. Velardi, L. Ruggeri, M. Capanni, A. Mancusi, K. Perruccio, F. Aversa and M.F. Martelli: “Immunotherapy with alloreactive natural killer cells in haploidentical haematopoietic transplantation”, Hematol. J., Vol. 5, Suppl 3, (2004), pp. S87–S90.
  • [149] S. Arai and H.G. Klingemann: “Natural killer cells: can they be useful as adoptive immunotherapy for cancer?”, Expert. Opin. Biol. Ther., Vol. 5, (2005), pp. 163–172.
  • [150] H.G. Klingemann: “Relevance and potential of natural killer cells in stem cell transplantation”, Biol. Blood Marrow Transplant., Vol. 6, (2000), pp. 90–99.
  • [151] H.G. Klingemann: “Natural killer cell-based immunotherapeutic strategies”, Cytotherapy, Vol. 7, (2005), pp. 16–22. [Crossref]
  • [152] I.A. Voutsadakis: “NK cells in allogeneic bone marrow transplantation”, Cancer Immunol. Immunother., Vol. 52, (2003), pp. 525–534. [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11536-006-0023-x
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.