Preferences help
enabled [disable] Abstract
Number of results
2014 | 12 | 10 | 755-766
Article title

Threshold conditions and bound states for locally periodic delta potentials

Title variants
Languages of publication
We present a systematic study of the conditions for the generation of threshold energy eigen states and also the energy spectrum generated by two types of locally periodic delta potentials each having the same strength λV and separation distance parameter a: (a) sum of N attractive potentials and (b) sum of pairs of attractive and repulsive potentials. Using the dimensionless parameter g = λV a in case (a) the values of g = g
n, n = 1, 2, …, N at which threshold energy bound state gets generated are shown to be the roots of Nth order polynomial D
1(N, g) in g. We present an algebraic recursive procedure to evaluate the polynomial D
1(N, g) for any given N. This method obviates the need for the tedious mathematical analysis described in our earlier work to generate D
1(N, g). A similar study is presented for case (b). Using the properties of D
1(N, g) we establish that in case (a) the critical minimum value of g which guarantees the generation of the maximum possible number of bound states is g = 4. The corresponding result for case (b) is g = 2. A typical set of numerical results showing the pattern of variation of g
n as a function of n and several interesting features of the energy spectrum for different values of g and N are also described.
Physical description
1 - 10 - 2014
16 - 8 - 2014
  • Department of Physics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bangalore, 560035, India
  • Department of Physics, North Orissa University, Baripada, 757003, India
  • Department of Sciences, Amrita Vishwa Vidyapeetham, Coimbatore, 641112, India
  • [1] C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996)
  • [2] K. Gottfried, T.-M. Yan, Quantum Mechanics: Fundamental (Springer-Verlag, New York, 2003)
  • [3] D.J. Griffiths, Introduction to Quantum mechanics (Pearson Education, New Jersey, 2005)
  • [4] S.H. Patil, A.S. Roy, Physica A 253, 517 (1998)[Crossref]
  • [5] B. Sahu, B. Sahu, Phys. Lett. A 373, 4033 (2009)[Crossref]
  • [6] E. Demiralp, H. Beker, J. Phys. A: Math. Gen. 36, 7449 (2003)[Crossref]
  • [7] A.K. Jain, S.K. Deb, C.S. Shastry, Am. J. Phys. 46, 147 (1978)[Crossref]
  • [8] V. Bezák, J. Math. Phys. 37, 5939 (1996)[Crossref]
  • [9] A. Robinovitch, Am. J. Phys. 53, 768 (1985)[Crossref]
  • [10] C. Aslangul, Am. J. Phys. 63, 935 (1995)[Crossref]
  • [11] S. Geltman, J. At. Mol. Opt. Phys. 2011, 573179 (2011)
  • [12] D. Witthaut, S. Mossmann, H.J. Korsch, J. Phys. A: Math. Gen. 38, 1777 (2005)[Crossref]
  • [13] P.R. Berman, Am. J. Phys. 81, 190 (2013)[Crossref]
  • [14] M. Dharani, B. Sahu, C.S. Shastry, Cent. Eur. J. Phys. 11, 995 (2013)[Crossref]
  • [15] D.J. Griffiths, C.A. Steinke, Am. J. Phys. 69, 137 (2001)[Crossref]
  • [16] V. Bezak, J. Math. Phys. 48, 112108 (2007)[Crossref]
  • [17] A.-C. Ji, W.M. Liu, J.L. Song, F. Zhou, Phys. Rev. Lett. 101, 010402 (2008)[Crossref]
  • [18] B. Li, X.-F. Zhang, Y.-Q. Li, Y. Chen, W.M. Liu, Phys. Rev. A. 78, 023608 (2008)[Crossref]
  • [19] Z.X. Liang, Z.D. Zhang, W.M. Liu, Phys. Rev. Lett. 94, 050402 (2005)[Crossref]
  • [20] L.N. Pandey, T.F. George, Appl. Phys. Lett. 61, 1081 (1992)[Crossref]
  • [21] L.N. Pandey, T.F. George, M.L. Rustgi, J. Appl. Phys. 68, 1933 (1990)[Crossref]
  • [22] Y.-C. Chang, H. Yao, M. Mohiuddin, J. Appl. Phys. Lett. 75, 2686 (1999)[Crossref]
  • [23] W.C. Hsu, D. Guo, J. Appl. Phys. 73, 8615 (1993)[Crossref]
  • [24] J.M. Munoz-casteneda, J.M. Guilarte, A.M. Mosquera, Phys. Rev. D. 87, 105020 (2013)[Crossref]
  • [25] W. Barford, M.W. Long, J. Phys. Condens. Matter 5, 199 (1993)[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.