PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2014 | 12 | 9 | 666-670
Article title

Silicon solar cells with Al2O3 antireflection coating

Content
Title variants
Languages of publication
EN
Abstracts
EN
The paper presents the possibility of using Al2O3 antireflection coatings deposited by atomic layer deposition ALD. The ALD method is based on alternate pulsing of the precursor gases and vapors onto the substrate surface and then chemisorption or surface reaction of the precursors. The reactor is purged with an inert gas between the precursor pulses. The Al2O3 thin film in structure of the finished solar cells can play the role of both antireflection and passivation layer which will simplify the process. For this research 50×50 mm monocrystalline silicon solar cells with one bus bar have been used. The metallic contacts were prepared by screen printing method and Al2O3 antireflection coating by ALD method. Results and their analysis allow to conclude that the Al2O3 antireflection coating deposited by ALD has a significant impact on the optoelectronic properties of the silicon solar cell. For about 80 nm of Al2O3 the best results were obtained in the wavelength range of 400 to 800 nm reducing the reflection to less than 1%. The difference in the solar cells efficiency between with and without antireflection coating was 5.28%. The LBIC scan measurements may indicate a positive influence of the thin film Al2O3 on the bulk passivation of the silicon.
Publisher
Journal
Year
Volume
12
Issue
9
Pages
666-670
Physical description
Dates
published
1 - 9 - 2014
online
31 - 7 - 2014
References
  • [1] L. A. Dobrzański et al., J. Mater. Process. Tech. 201, 291 (2008) http://dx.doi.org/10.1016/j.jmatprotec.2007.11.278[Crossref]
  • [2] L. A. Dobrzański, A. Drygała, JAMME 31, 77 (2008)
  • [3] J. Zhao, M. A. Green, IEEE T. Electron Dev. 38, 1925 (1991) http://dx.doi.org/10.1109/16.119035[Crossref]
  • [4] S. K. Dhungel et al., J. Korean Phys. Soc. 49, 885 (2006)
  • [5] K. Jinkuk et al., 30, 41 (2013)
  • [6] R. Kishore, S. N. Singh, B. K. Das, Renew. Ener. 12, 131 (1997) http://dx.doi.org/10.1016/S0960-1481(97)00030-X[Crossref]
  • [7] C. C. Johnson, T. Wydeven, K. Donohoe, Sol. Energy. 31, 355 (1983) http://dx.doi.org/10.1016/0038-092X(83)90133-0[Crossref]
  • [8] C. R. Lin, D. H. Wei, C. K. Chang, W. H. Liao, Phys. Procedia 18, 46 (2011) http://dx.doi.org/10.1016/j.phpro.2011.06.055[Crossref]
  • [9] P. Violet, E. Blanquet, D. Monnier, I. Nuta, C. Chatillon, Surf. Coat. Technol. 204, 882 (2009) http://dx.doi.org/10.1016/j.surfcoat.2009.08.022[Crossref]
  • [10] A. Szeghalmi et al, Appl. Opt. 48, 1727 (2009) http://dx.doi.org/10.1364/AO.48.001727[Crossref]
  • [11] B. Brennan, H. Dong, D. Zhernokletov, J. Kim, R. M. Wallace, Appl. Phys. Express 4, 125701 (2011) http://dx.doi.org/10.1143/APEX.4.125701[Crossref]
  • [12] L. A. Dobrzański, K. Lukaszkowicz, D. Pakuła, J. Mikuła, AMSE 28, 12 (2007)
  • [13] M. Chwastek, J. Weszka, J. Jurusik, B. Hajduk, P. Jarka, AMSE 48, 69 (2011)
  • [14] J. Weszka et al., JAMME 49, 224 (2011)
  • [15] J. Weszka, M. Śzindler, A. Sliwa, B. Hajduk, J. Jurusik, AMSE 48, 40 (2011)
  • [16] W. Liang et al., Phot. IEEE J. 3, 678 (2013) http://dx.doi.org/10.1109/JPHOTOV.2012.2235525[Crossref]
  • [17] S.-K. Oh et al., J. Semicond. Sci. Tech. 13, 581 (2013) http://dx.doi.org/10.5573/JSTS.2013.13.6.581[Crossref]
  • [18] V. Naumann et al., Energy Procedia 27, 312 (2012) http://dx.doi.org/10.1016/j.egypro.2012.07.069[Crossref]
  • [19] K.-H. Kim et al., Phys. Status Solidi Rapid Res. Lett. 5, 202 (2011) http://dx.doi.org/10.1002/pssr.201105188[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-014-0500-9
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.