Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 12 | 8 | 532-540

Article title

The yield condition in the mobilization of yield-stress materials in distensible tubes

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this paper we investigate the yield condition in the mobilization of yield-stress materials in distensible tubes. We discuss the two possibilities for modeling the yield-stress materials prior to yield: solid-like materials and highly-viscous fluids and identify the logical consequences of these two approaches on the yield condition. Our results reveal that these two modeling approaches have far reaching consequences on the yield bottleneck and hence should be critically examined in the light of experimental evidence. As part of this investigation we derive an analytical expression for the pressure field inside a distensible tube with a Newtonian flow using a one-dimensional Navier-Stokes flow model in conjunction with a pressurearea constitutive relation based on elastic tube wall characteristics. This analytical expression has wider applicability than in the identification of the yield condition of yield-stress material.

Publisher

Journal

Year

Volume

12

Issue

8

Pages

532-540

Physical description

Dates

published
1 - 8 - 2014
online
20 - 7 - 2014

Contributors

author
  • Department of Physics & Astronomy, University College London, Gower Street, WC1E 6BT, London, UK

References

  • [1] R. B. Bird, R. C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, vol. 1, 2nd edition (John Wily & Sons, US, 1987)
  • [2] P. J. Carreau, D. De Kee, R. P. Chhabra, Rheology of Polymeric Systems, 1st edition (Hanser Publishers, Germany, 1997)
  • [3] H. A. Barnes, J. Non-Newton. Fluid 81, 133 (1999) http://dx.doi.org/10.1016/S0377-0257(98)00094-9[Crossref]
  • [4] T. Sochi, Transport Porous Med. 85, 489 (2010) http://dx.doi.org/10.1007/s11242-010-9574-z[Crossref]
  • [5] T. Sochi, Polymer 51, 5007 (2010) http://dx.doi.org/10.1016/j.polymer.2010.07.047[Crossref]
  • [6] E. W. Merrill, C. S. Cheng, G. A. Pelletier, J. Appl. Physiol. 26, 1 (1969)
  • [7] T. F. Al-Fariss, K. L. Pinder, Can. J. Chem. Eng. 65, 391 (1987) http://dx.doi.org/10.1002/cjce.5450650306[Crossref]
  • [8] L. T. Wardhaugh, D. V. Boger, S. P. Tonner, International Meeting on Petroleum Engineering, Nov. 1–4, 1988, Tianjin, China (SPE 17625)
  • [9] C. L. Morris, D. L. Rucknagel, R. Shukla, R. A. Gruppo, C. M. Smith, P. Blackshear Jr., Microvasc. Res. 37, 323 (1989) http://dx.doi.org/10.1016/0026-2862(89)90050-2[Crossref]
  • [10] J. A. Ajienka, C. U. Ikoku, Soc. Petrol. Eng. SPE 23605, 1 (1991)
  • [11] F. Harte, S. Clark, G. V. Barbosa-Cánovas, J. Food Eng. 80, 990 (2007) http://dx.doi.org/10.1016/j.jfoodeng.2006.06.027[Crossref]
  • [12] T. Sochi, J. Polym. Sci. Pol. Phys. 48, 2437 (2010) http://dx.doi.org/10.1002/polb.22144[Crossref]
  • [13] B-K. Lee, S. Xue, J. Nam, H. Lim, S. Shin, Korea-Aust. Rheol. J. 23, 1 (2011) http://dx.doi.org/10.1007/s13367-011-0001-y[Crossref]
  • [14] W. Deng, Ph.D. thesis, University of Dundee (Dundee, UK, 2012)
  • [15] I. Peinado, E. Rosa, A. Heredia, A. Andrés, J. Food Eng. 113, 365 (2012) http://dx.doi.org/10.1016/j.jfoodeng.2012.06.008[Crossref]
  • [16] S. Livescu, J. Petrol. Sci. Eng. 98–99, 174 (2012) http://dx.doi.org/10.1016/j.petrol.2012.04.026[Crossref]
  • [17] V. Ciriello, V. Di Federico, Adv. Water Resour. 43, 38 (2012) http://dx.doi.org/10.1016/j.advwatres.2012.03.028[Crossref]
  • [18] K. K. Farayola, A. T. Olaoye, A. Adewuyi, Nigeria Annual International Conference and Exhibition, Jul. 30–Aug. 1, 2013, Lagos, Nigeria
  • [19] F. Mahaut, G. Gauthier, P. Gouze, L. Luquot, D. Salin, J. Martin, Environ. Prog. Sust. Energ. 33, 572 (2014) http://dx.doi.org/10.1002/ep.11826[Crossref]
  • [20] T. Sochi, arXiv:1306.2067 [physics.flu-dyn]
  • [21] H. A. Barnes, K. Walters, Rheol. Acta 24, 323 (1985) http://dx.doi.org/10.1007/BF01333960[Crossref]
  • [22] G. Astarita, J. Rheol. 34, 275 (1990) http://dx.doi.org/10.1122/1.550142[Crossref]
  • [23] I. D. Evans, J. Rheol. 36, 1313 (1992) http://dx.doi.org/10.1122/1.550262[Crossref]
  • [24] P. C. F. Møller, J. Mewis, D. Bonn, Soft Matter 2, 274 (2006) http://dx.doi.org/10.1039/b517840a[Crossref]
  • [25] P. R. de Souza Mendes, R. L. Thompson, Rheol. Acta 52, 673 (2013) http://dx.doi.org/10.1007/s00397-013-0699-1[Crossref]
  • [26] V. Chaplain, P. Mills, G. Guiffant, P. Cerasi, J Phys. II 2, 2145 (1992)
  • [27] M. T. Balhoff, K. E. Thompson, AIChE J. 50, 3034 (2004) http://dx.doi.org/10.1002/aic.10234[Crossref]
  • [28] M. Chen, W. R. Rossen, Y. C. Yortsos, Chem. Eng. Sci. 60, 4183 (2005) http://dx.doi.org/10.1016/j.ces.2005.02.054[Crossref]
  • [29] T. Sochi, Ph.D. thesis, Imperial College London (London, UK, 2007)
  • [30] T. Sochi, M. J. Blunt, J. Petrol. Sci. Eng. 60, 105 (2008) http://dx.doi.org/10.1016/j.petrol.2007.05.009[Crossref]
  • [31] H. O. Balan, M. T. Balhoff, Q. P. Nguyen, W. R. Rossen, Energ. Fuel 25, 3974 (2011) http://dx.doi.org/10.1021/ef2006707[Crossref]
  • [32] W. Liu, J. Yao, Y. Wang, Int. J. Heat Mass Tran. 55, 6017 (2012) http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.06.012[Crossref]
  • [33] T. Chevalier, C. Chevalier, X. Clain, J. C. Dupla, J. Canou, S. Rodts, P. Coussot, J. Non-Newton. Fluid 195, 57 (2013) http://dx.doi.org/10.1016/j.jnnfm.2012.12.005[Crossref]
  • [34] T. Sochi, arXiv:1311.2644 [physics.flu-dyn]
  • [35] K. Vajravelu, S. Sreenadh, P. Devaki, K. V. Prasad, Cent. Eur. J. Phys. 9, 1357 (2011) http://dx.doi.org/10.2478/s11534-011-0034-3[Crossref]
  • [36] A. C. L. Barnard, W. A. Hunt, W. P. Timlake, E. Varley, Biophys. J. 6, 717 (1966) http://dx.doi.org/10.1016/S0006-3495(66)86690-0[Crossref]
  • [37] T. Sochi, arXiv:1304.2320 [physics.flu-dyn]
  • [38] T. Sochi, arXiv:1305.2546 [physics.flu-dyn]
  • [39] T. Sochi, Int. J. Model. Simul. Sci. Comp. 04, 1350011 (2013) http://dx.doi.org/10.1142/S1793962313500116[Crossref]
  • [40] T. Sochi, Polym. Rev. 51, 309 (2011) http://dx.doi.org/10.1080/15583724.2011.615961[Crossref]
  • [41] A. Costa, G. Wadge, O. Melnik, Earth Planet. Sc. Lett. 337, 39 (2012) http://dx.doi.org/10.1016/j.epsl.2012.05.011[Crossref]
  • [42] Y. Damianou, G. C. Georgiou, I. Moulitsas, J. Non-Newton. Fluid 193, 89 (2013) http://dx.doi.org/10.1016/j.jnnfm.2012.09.004[Crossref]
  • [43] T. Sochi, Comp. Model. Eng. Sci. (Accepted), (2014)
  • [44] T. Sochi, arXiv:1310.4221 [physics.flu-dyn]
  • [45] T. Sochi, arXiv:1310.7655 [physics.flu-dyn]
  • [46] T. Sochi, J. Appl. Fluid Mech. (Accepted), (2014)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-014-0498-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.