PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2014 | 12 | 9 | 615-627
Article title

Self-regulating genes. Exact steady state solution by using Poisson representation

Content
Title variants
Languages of publication
EN
Abstracts
EN
Systems biology studies the structure and behavior of complex gene regulatory networks. One of its aims is to develop a quantitative understanding of the modular components that constitute such networks. The self-regulating gene is a type of auto regulatory genetic modules which appears in over 40% of known transcription factors in E. coli. In this work, using the technique of Poisson Representation, we are able to provide exact steady state solutions for this feedback model. By using the methods of synthetic biology (P.E.M. Purnick and Weiss, R., Nature Reviews, Molecular Cell Biology, 2009, 10: 410–422) one can build the system itself from modules like this.
Publisher

Journal
Year
Volume
12
Issue
9
Pages
615-627
Physical description
Dates
published
1 - 9 - 2014
online
31 - 7 - 2014
Contributors
  • Department of Neurology and Center for Translational Systems Biology, Ichan School of Medicine at Mount Sinai, New York, NY, 10029, USA, istvan.sugar@mssm.edu
author
  • Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary, simon@enzim.hu
References
  • [1] J. E. M. Hornos et al., Phys. Rev. E 72, 051907 (2005) http://dx.doi.org/10.1103/PhysRevE.72.051907[Crossref]
  • [2] G. C. P. Innocentini, J. E. M. Hornos, J. Math. Biol. 55, 413 (2007) http://dx.doi.org/10.1007/s00285-007-0090-x[Crossref]
  • [3] A. F. Ramos, J. E. M. Hornos, Phys. Rev. Lett. 99, 108103 (2007) http://dx.doi.org/10.1103/PhysRevLett.99.108103[Crossref]
  • [4] A. F. Ramos, G. C. P. Innocentini, J. E. M. Hornos, Phys. Rev. E 83, 062902 (2011) http://dx.doi.org/10.1103/PhysRevE.83.062902[Crossref]
  • [5] A. F. Ramos et al., Iet Systems Biology 4, 311 (2010) http://dx.doi.org/10.1049/iet-syb.2010.0058[Crossref]
  • [6] C. W. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences (Springer, Berlin, 2004), Series in Synergetics.
  • [7] M. Abramowitz, I. A. Sregun, Handbook of Mathematical Functions (National Bureau of Standards, 1972).
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-014-0497-0
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.