Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 12 | 8 | 559-564

Article title

Study of the surface relaxation and single vacancy formation in very thin Cu (001) film by using MAEAM

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
The surface relaxation and the formation of a single vacancy in very thin Cu (001) film formed by 2 ∼ 14 atomic layers have been studied by using MAEAM and MD simulation. For the surface relaxtion, the highest surface energy is in the l = 2 atomic layers. The multilayer relaxation mainly occurs between the first two atomic layers, and the maximum contractive displacement is obtained in the very thin Cu (001) film formed by l = 3 atomic layers. For the vacancy formed in l′ = 1 of the very thin Cu (001) film formed by l = 2 ∼ 14 layers, the most difficult site in the film formed by l = 3 atomic layers.

Keywords

Publisher

Journal

Year

Volume

12

Issue

8

Pages

559-564

Physical description

Dates

published
1 - 8 - 2014
online
20 - 7 - 2014

Contributors

author
  • Ankang University Ankang, 725000, Shannxi, PR China

References

  • [1] R.W. Hoffman, In: H.G.F. Wilsdorf (Ed), Thin films (Metal Park, OH, American Society for Metals, 1964)
  • [2] H. Mizubayashi et al., J. Metastab. Nanocryst. 24–25, 61 (2005) http://dx.doi.org/10.4028/www.scientific.net/JMNM.24-25.61[Crossref]
  • [3] N. Yagi et al., J. Metastab. Nanocryst. 24–25, 503 (2005) http://dx.doi.org/10.4028/www.scientific.net/JMNM.24-25.503[Crossref]
  • [4] B.S. Berry, A.C. Pritchet, J. Phys. 42, C5–1111 (1981)
  • [5] S. Sakai et al., Scripta Mater. 45, 1313 (2001) http://dx.doi.org/10.1016/S1359-6462(01)01167-8[Crossref]
  • [6] M.J. Kobrinsky, C.V. Thompson, J. Appl. Phys. 89, 91 (2001) http://dx.doi.org/10.1063/1.1326856[Crossref]
  • [7] D. Gan et al., J. Appl. Phys. 97, 103531 (2005) http://dx.doi.org/10.1063/1.1904720[Crossref]
  • [8] J. Peng et al., Mater. Sci. Forum. 524–525, 595 (2006) http://dx.doi.org/10.4028/www.scientific.net/MSF.524-525.595[Crossref]
  • [9] K.N. Tu, J. Appl. Phys. 94, 5451 (2003) http://dx.doi.org/10.1063/1.1611263[Crossref]
  • [10] C.S. Hau-Riege, Microelectron. Reliab. 44, 195 (2004) http://dx.doi.org/10.1016/j.microrel.2003.10.020[Crossref]
  • [11] W.Y. Hum, M. Fukumoto, Modeling Simu. Mater. Sci. Eng. 10, 707 (2002) http://dx.doi.org/10.1088/0965-0393/10/6/307[Crossref]
  • [12] W.Y. Hu et al., J. Phys.: Cond. Matt. 13, 1193 (2001)
  • [13] W.Y. Hu et al., J. Mater. Sci. Tech. 15, 336 (1999)
  • [14] H.Q. Deng et al., Appl. Surf. Sci. 221, 408 (2004) http://dx.doi.org/10.1016/S0169-4332(03)00946-2[Crossref]
  • [15] R.A. Johnson, Phys. Rev. B 39, 3924 (1988) http://dx.doi.org/10.1103/PhysRevB.37.3924[Crossref]
  • [16] R.A. Johnson, Phys. Rev. B 39, 12554 (1989) http://dx.doi.org/10.1103/PhysRevB.39.12554[Crossref]
  • [17] R.A. Johnson, Phys. Rev. B 41, 9717 (1990) http://dx.doi.org/10.1103/PhysRevB.41.9717[Crossref]
  • [18] S.M. Foiles et al., Phys. Rev. B 33, 7983 (1986) http://dx.doi.org/10.1103/PhysRevB.33.7983[Crossref]
  • [19] S.M. Foiles, M.S. Daw, Phys. Rev. B 38, 12643 (1988) http://dx.doi.org/10.1103/PhysRevB.38.12643[Crossref]
  • [20] F.S. Liu et al., Modelling Simul. Mater. Sci. Eng. 18, 045010 (2010) http://dx.doi.org/10.1088/0965-0393/18/4/045010[Crossref]
  • [21] F.S. Liu et al., Comp. Mater. Sci. 47, 505 (2009)
  • [22] F.S. Liu et al., Nucl. Instrum. Meth. B 267, 3267 (2009) http://dx.doi.org/10.1016/j.nimb.2009.06.055[Crossref]
  • [23] B.W. Zhang et al., Phys. Rev. B 48, 3022 (1993)
  • [24] B.W. Zhang et al., Phys. B 262, 218 (1999) http://dx.doi.org/10.1016/S0921-4526(98)01156-9[Crossref]
  • [25] X.L. Shu, In:Ph.D. Dissertation(Ed), Study on the physical properties, point defects and atomic diffusion in intermetallics by a modified analytic EAM model (P. R. China, Hunan University, Changsha, 2001)
  • [26] C.J. Smithells, In: E. A. Brandes(Ed), Smithshells Metals Reference Book (Butterworths, London, 1983)
  • [27] R.W. Smith, D.J. Srolovitz, Phys. Rev. B 79, 1448 (1996)
  • [28] J.R. Beeler Jr, Radiation Effects Computer Experiments (North Holland, New York, 1983)
  • [29] T.D. Daff et al., Surf. Sci. 603, 445 (2009) http://dx.doi.org/10.1016/j.susc.2008.11.031[Crossref]
  • [30] J. Cai, Y.Y. Ye, Phys. Rev. B 54, 8398 (1996) http://dx.doi.org/10.1103/PhysRevB.54.8398[Crossref]
  • [31] T.D. Daff et al., J. Phys. Chem. C 113, 15714 (2009) http://dx.doi.org/10.1021/jp904054n[Crossref]
  • [32] H. Cox et al., Mol. Phys. 96, 921 (1998) http://dx.doi.org/10.1080/00268979809482278[Crossref]
  • [33] H.L. Davis, Surf. Sci. 126, 245 (1983) http://dx.doi.org/10.1016/0039-6028(83)90717-3[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-014-0489-0
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.