PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2014 | 12 | 7 | 517-520
Article title

Two dimensional fractional projectile motion in a resisting medium

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper we propose a fractional differential equation describing the behavior of a two dimensional projectile in a resisting medium. In order to maintain the dimensionality of the physical quantities in the system, an auxiliary parameter k was introduced in the derivative operator. This parameter has a dimension of inverse of seconds (sec)−1 and characterizes the existence of fractional time components in the given system. It will be shown that the trajectories of the projectile at different values of γ and different fixed values of velocity v
0 and angle θ, in the fractional approach, are always less than the classical one, unlike the results obtained in other studies. All the results obtained in the ordinary case may be obtained from the fractional case when γ = 1.
Publisher

Journal
Year
Volume
12
Issue
7
Pages
517-520
Physical description
Dates
published
1 - 7 - 2014
online
21 - 6 - 2014
Contributors
author
  • Department of Electrical Engineering, DICIS, University of Gto, Campus Irapuato-Salamanca, Salamanca Gto, Mexico
author
  • Department of Electrical Engineering, DICIS, University of Gto, Campus Irapuato-Salamanca, Salamanca Gto, Mexico
  • Department of Solar Materials. Renewable Energy Institute, National Autonomous University of Mexico, Priv. Xochicalco s/n. Col. Centro, Temixco Morelos, Mexico, franciscogoma@hotmail.com
author
  • Academic Unit of Mathematics, Autonomous University of Zacatecas, Zacatecas, Mexico
  • Academic Unit of Mathematics, Autonomous University of Zacatecas, Zacatecas, Mexico
References
  • [1] K. Oldham, J. Spanier, The Fractional Calculus, (Academic Press, New York, 1974)
  • [2] I. Podlubny, Fractional Differential Equations, (Academic Press, New York, 1999)
  • [3] R. Hilfer, Applications of Fractional Calculus in Physics, (World Scientific, Singapore, 2000) http://dx.doi.org/10.1142/9789812817747[Crossref]
  • [4] S. G. Samko, A. A. Kilbas, O. I. Maritchev, Fractional Integrals and Derivatives, Theory and Applications, (Gordon and Breach Science Publishers, Langhorne, PA, 1993)
  • [5] M. Caputo, F. Mainardi, Pure Appl. Geophys. 91, 8 (1971) http://dx.doi.org/10.1007/BF00879562[Crossref]
  • [6] S. Westerlund. Causality, report no. 940426, University of Kalmar, (1994)
  • [7] R.R. Nigmatullin, A.A. Arbuzov, F. Salehli, A. Giz, I. Bayrak, H. Catalgil-Giz, Physica. B388 (2007)
  • [8] R.L. Magin, O. Abdullah, D. Baleanu, X. Joe Zhou, Journal of Magnetic Resonance, 190 (2008)
  • [9] V. Uchaikin, Fractional Derivatives for Physicists and Engineers, (Springer, 2013) http://dx.doi.org/10.1007/978-3-642-33911-0[Crossref]
  • [10] R.L. Magin, Fractional Calculus in Bioengineering, (Redding, CT: Begell House, 2006)
  • [11] C. M. Ionescu, R. De Keyser, IEEE Tans. Biomed. Eng. 56, 4 (2009) http://dx.doi.org/10.1109/TBME.2009.2037199[Crossref]
  • [12] R. Martin, J. J. Quintana, A. Ramos, L. De la Nuez, Proc. IEEE Conf. Electroche. (2008)
  • [13] I. S. Jesus, T. J. A. Machado, B. J. Cunha, J. Vibrations Control. 14, 9 (2008)
  • [14] D. Baleanu, Alireza K. Golmankhaneh, R. Nigmatullin, Ali K. Golmankhaneh, Cent. Eur. J. Phys. 8, 120 (2010) http://dx.doi.org/10.2478/s11534-009-0085-x[Crossref]
  • [15] A.K. Golmankhaneh, A.M. Yengejeh, D. Baleanu, Int. J. Theor. Phys. 51, 2909 (2012) http://dx.doi.org/10.1007/s10773-012-1169-8[Crossref]
  • [16] V. Kulish, L. L. José, Journal of Fluids Engineering 124, Article ID (2002)
  • [17] Baleanu D., Günvenc Z.B., Tenreiro Machado J.A. New Trends in Nanotechnology and Fractional Calculus Applications, (Springer, 2010) http://dx.doi.org/10.1007/978-90-481-3293-5[Crossref]
  • [18] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo. Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos, (World Scientific, 2012)
  • [19] K. Diethelm. The Analysis of Fractional Differential Equations, (Springer-Verlag Berlin Heidelber, 2010) http://dx.doi.org/10.1007/978-3-642-14574-2[Crossref]
  • [20] Alireza, K. Golmankhaneh. Investigations in Dynamics: With Focus on Fractional Dynamics. (LAP Lambert, Academic Publishing, Germany, 2012)
  • [21] S. F. Kwok, Physica A 350, (2005)
  • [22] E. Abdelhalim, Applied Mathematical Modeling 35, (2011)
  • [23] J. F. Gómez-Aguilar, J. J. Rosales-García, J. J. Bernal-Alvarado, T. Córdova-Fraga, R. Guzmán-Cabrera, Rev. Mex. Fís. 58, (2012)
  • [24] J. J. Rosales, M. Guía, J. F. Gómez, V. I. Tkach, Discontinuity Nonlinearity and Complexity 1, 4 (2012)
  • [25] J. Juan Rosales García, M. Guía Calderon, Juan Martínez Ortiz, Dumitru Baleanu, Proceedings of the Romanian Academy, Serie A, 14, 1 (2013)
  • [26] S.T. Thornton, J.B. Marion. Classical Dynamics of Particles and Systems, (Ed. Thomson Brooks/cole, 2004)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-014-0473-8
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.