PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2014 | 12 | 6 | 392-405
Article title

Spinless relativistic particle in energy-dependent potential and normalization of the wave function

Content
Title variants
Languages of publication
EN
Abstracts
EN
The problem of normalization related to a Klein-Gordon particle subjected to vector plus scalar energy-dependent potentials is clarified in the context of the path integral approach. In addition the correction relating to the normalizing constant of wave functions is exactly determined. As examples, the energy dependent linear and Coulomb potentials are considered. The wave functions obtained via spectral decomposition, were found exactly normalized.
Publisher

Journal
Year
Volume
12
Issue
6
Pages
392-405
Physical description
Dates
published
1 - 6 - 2014
online
31 - 5 - 2014
Contributors
  • Département de Physique, Faculté des sciences exactes, Université Constantine 1, Constantine, Algeria
  • Département de Physique, Faculté des sciences exactes, Université Constantine 1, Constantine, Algeria, lyazidchetouani@gmail.com
References
  • [1] J. Formanek, J. Mares, R. Lombard, Czech. J. Phys. 54, 289 (2004) http://dx.doi.org/10.1023/B:CJOP.0000018127.95600.a3[Crossref]
  • [2] J. Garcia-Martinez, J. Garcia-Ravelo, J. J. Pena, A. Schulze-Halberg, Phys. Lett. A 373, 3619 (2009) http://dx.doi.org/10.1016/j.physleta.2009.08.012[Crossref]
  • [3] R. Lombard, An-Najah Univ. J. Res. (N. Sc.) 25, 49 (2011)
  • [4] H. Hassanabadi, S. Zarrinkamar, A. A. Rajabi, Commun. Theor. Phys. 55, 541 (2011) http://dx.doi.org/10.1088/0253-6102/55/4/01[Crossref]
  • [5] R. J. Lombard, J. Mares, Phys. Lett. A 373, 426 (2009) http://dx.doi.org/10.1016/j.physleta.2008.12.009[Crossref]
  • [6] R. Yekken, R. J. Lombard, J. Phys. A: Math. Theor. 43, 125301 (2010) http://dx.doi.org/10.1088/1751-8113/43/12/125301[Crossref]
  • [7] A. Schulze-Halberg, Cent. Eur. J. Phys. 9, 57 (2011) http://dx.doi.org/10.2478/s11534-010-0034-8[Crossref]
  • [8] R. J. Lombard, J. Mares, C. Volpe, arXiv:0411067v1[hep-ph]
  • [9] A. Benchikha, L. Chetouani, Mod. Phys. Lett. A 28, 1350079 (2013) http://dx.doi.org/10.1142/S021773231350079X[Crossref]
  • [10] J. Lin, Y. S. Li, X. M. Qian, Phys. Lett. A 362, 212 (2007) http://dx.doi.org/10.1016/j.physleta.2006.10.016[Crossref]
  • [11] A. A. Nabiev, Inverse Probl. 22, 2055 (2006) http://dx.doi.org/10.1088/0266-5611/22/6/009[Crossref]
  • [12] C. F. Yang, J. Math. Anal. Appl. 393, 526 (2012) http://dx.doi.org/10.1016/j.jmaa.2012.03.003[Crossref]
  • [13] M. Znojil, arXiv:0403223v2 [quant-ph]
  • [14] H. Hassanabadi, S. Zarrinkamar, H. Hamzavi, A. A. Rajabi, Arab. J. Sci. Eng. 37, 209 (2012) http://dx.doi.org/10.1007/s13369-011-0168-z[Crossref]
  • [15] M. Hamzavi, S. M. Ikhdair, arXiv:1205.2191 [nucl-th]
  • [16] L. S. Schulman, Techniques and Applications of Path Integration (Wiley, New York, 1981)
  • [17] D. J. Griffiths: Introduction to Quantum Mechanics (Prentice Hall, Englewood Cliffs, NJ, 1995)
  • [18] C. Grosche, F. Steiner, Handbook of Feynman Path Integrals, Springer Tracts in Modern Physics, Vol. 145 (Springer, Berlin, Heidelberg, 1998)
  • [19] I. S. Gradshteyn, I. M. Ryzhik, In: A. Jeffrey, D. Zwillinger (Eds.), Table of Integrals, Series, and Products (Academic Press, New York, 2007)
  • [20] C. Grosche, J. Phys. A: Math. Gen. 29, 365 (1996) http://dx.doi.org/10.1088/0305-4470/29/2/017[Crossref]
  • [21] V. S. Olkhovsky, S. P. Maydanyuk, E. Recami, Phys. Part. Nucl. 41, 508 (2010) http://dx.doi.org/10.1134/S1063779610040027[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-014-0457-8
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.