Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 12 | 5 | 367-374

Article title

EIT phenomenon for the three-level hydrogen atoms and its application to the era of cosmological recombination

Content

Title variants

Languages of publication

EN

Abstracts

EN
The paper evaluates the contribution of the electromagnetically induced transparency (EIT) phenomenon to the processes of the microwave background (CMB) formation in early universe. We found the additional function f to the integrated line absorption coefficient. This makes it the necessity to upgrade the Sobolev escape probability: p
ij (τ
S) → p
ij (τ
S · (1 + f)). We calculated the magnitude of the function f for different schemes of the hydrogen atom in the three-level approximation in terms of the field parameters. The electric field amplitudes are defined using the CMB distribution. We found that the contribution of f can be significant in some cases.

Publisher

Journal

Year

Volume

12

Issue

5

Pages

367-374

Physical description

Dates

published
1 - 5 - 2014
online
8 - 5 - 2014

Contributors

  • Department of Physics, St. Petersburg State University, St. Petersburg, 198504, Russia

References

  • [1] J. P. Marangos, T. Halfmann, In: M. Bass, G. Li, E.V. Stryland (Eds.), Electromagnetically Induced Transparency, Handbook of Optics, Third Edition, vol. IV, Optical Properties of Materials, Nonlinear Optics (Mc Graw Hill, New York, 2010) 14
  • [2] Ya. B. Zel’dovich, V. G. Kurt, R. A. Syunyaev, Zh. Eksp. Teor. Fiz. 55, 278 (1968)
  • [3] Ya. B. Zel’dovich, V. G. Kurt, R. A. Syunyaev, Sov. Phys. JETP Lett. 28, 146 (1969)
  • [4] P. J. E. Peebles, Astrophys. J. 153, 1 (1968) http://dx.doi.org/10.1086/149628[Crossref]
  • [5] S. Seager, D. D. Sasselov, D. Scott, Astrophys. J. Suppl. Series 128, 407 (2000) http://dx.doi.org/10.1086/313388[Crossref]
  • [6] V. V. Sobolev, Sov. Astr.-AJ 1, 678 (1957)
  • [7] D. Solovyev, V. Dubrovich, G. Plunien, J. Phys. B: At. Mol. Opt. Phys. 45, 215001 (2012) http://dx.doi.org/10.1088/0953-4075/45/21/215001[Crossref]
  • [8] V. K. Dubrovich, S. I. Grachev, Astron. Lett. 31, 359 (2006) http://dx.doi.org/10.1134/1.1940107[Crossref]
  • [9] A. Lewis, J. Weller, R. Battye, Mon. Not. R. Astron. Soc. 373, 561 (2006) http://dx.doi.org/10.1111/j.1365-2966.2006.10983.x[Crossref]
  • [10] A. Aspect et al., Phys. Rev. Lett. 61, 826 (1988) http://dx.doi.org/10.1103/PhysRevLett.61.826[Crossref]
  • [11] I. L. Glukhov, E. A. Nekipelov, V. D. Ovsiannikov, J. Phys. B: At. Mol. Opt. Phys. 43, 125002 (2010) http://dx.doi.org/10.1088/0953-4075/43/12/125002[Crossref]
  • [12] T. F. Gallagher, W. E. Cooke, Phys. Rev. Lett. 42, 835 (1979) http://dx.doi.org/10.1103/PhysRevLett.42.835[Crossref]
  • [13] J. Weiner, P.-T. Ho, Light-Matter Interaction: Fundamentals and Applications (John Wiley & Sons, Inc., Hoboken, New Jersey, 2003) http://dx.doi.org/10.1002/9783527617883[Crossref]
  • [14] R. W. Boyd, Nonlinear Optics, Third Edition (Academic Press, Orlando, 2008) [WoS]
  • [15] R. M. Whitley, R. Stroud, Phys. Rev. A 14, 1498 (1976) http://dx.doi.org/10.1103/PhysRevA.14.1498[Crossref]
  • [16] J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, M. Xiao, Phys. Rev. A 51, 576 (1995) http://dx.doi.org/10.1103/PhysRevA.51.576[Crossref]
  • [17] S. Wielandy, A. L. Gaeta, Phys. Rev. A 58, 2500 (1998) http://dx.doi.org/10.1103/PhysRevA.58.2500[Crossref]
  • [18] J. Chluba, J. A. Rubino-Martin, R. A. Sunyaev, Mon. Not. R. Astron. Soc. 374, 1310 (2007) http://dx.doi.org/10.1111/j.1365-2966.2006.11239.x[Crossref]
  • [19] Y. Ali-Haïmoud, C. Hirata, Phys. Rev. D 82, 063521 (2010) http://dx.doi.org/10.1103/PhysRevD.82.063521[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-014-0452-0
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.