PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2014 | 12 | 5 | 375-382
Article title

Numerical study of the three-state Ashkin-Teller model with competing dynamics

Content
Title variants
Languages of publication
EN
Abstracts
EN
An open ferromagnetic Ashkin-Teller model with spin variables 0, ±1 is studied by standard Monte Carlo simulations on a square lattice in the presence of competing Glauber and Kawasaki dynamics. The Kawasaki dynamics simulates spin-exchange processes that continuously flow energy into the system from an external source. Our calculations reveal the presence, in the model, of tricritical points where first order and second order transition lines meet. Beyond that, several self-organized phases are detected when Kawasaki dynamics become dominant. Phase diagrams that comprise phase boundaries and stationary states have been determined in the model parameters’ space. In the case where spin-phonon interactions are incorporated in the model Hamiltonian, numerical results indicate that the paramagnetic phase is stabilized and almost all of the self-organized phases are destroyed.
Publisher

Journal
Year
Volume
12
Issue
5
Pages
375-382
Physical description
Dates
published
1 - 5 - 2014
online
8 - 5 - 2014
Contributors
  • Département de Physique (FAST) et Institut de Mathématiques et de Sciences Physiques (IMSP), Université d’Abomey-Calavi, 01 BP 613, Porto-Novo, Benin
  • Département de Physique (FAST) et Institut de Mathématiques et de Sciences Physiques (IMSP), Université d’Abomey-Calavi, 01 BP 613, Porto-Novo, Benin, fhontinfinde@yahoo.fr
  • Département de Physique (FAST) et Institut de Mathématiques et de Sciences Physiques (IMSP), Université d’Abomey-Calavi, 01 BP 613, Porto-Novo, Benin
  • Laboratoire de Physique Théorique, Département de Physique, Université Abou Bakr Belkaid, Tlemcen, Algérie
References
  • [1] G. Nicolis, I. Prigogine, Self-oganization in Non-Equilibrium Systems (Wiley, New York, 1977)
  • [2] A. I. López-Lacomba, J. Marro, Phys. Rev. B 46, 8244 (1992) http://dx.doi.org/10.1103/PhysRevB.46.8244[Crossref]
  • [3] Liu JiWen, M.A. YuQuiang, Commun. Theor. Phys. (Beijing, China) 32, 305 (1999)
  • [4] P. L. Garrido, J. Marro, Europhys. Lett. 15, 375 (1991) http://dx.doi.org/10.1209/0295-5075/15/4/002[Crossref]
  • [5] P. L. Garrido, J. Marro, J. Phys. A 25, 1453 (1992) http://dx.doi.org/10.1088/0305-4470/25/6/008[Crossref]
  • [6] H. Haken, Synergetics, 3rd ed. (Springer-Verlag, Berlin, 1983) http://dx.doi.org/10.1007/978-3-642-88338-5[Crossref]
  • [7] B. C. S. Grandi, W. Figueiredo, Phys. Rev. E 56, 5240 (1997) http://dx.doi.org/10.1103/PhysRevE.56.5240[Crossref]
  • [8] F. Hontinfinde, S. Bekhechi, R. Ferrando, Eur. Phys. J. B 16, 681 (2000). http://dx.doi.org/10.1007/s100510070186[Crossref]
  • [9] K. Kawasaki, In Phase Transition and Critical Phenomena, edited by C. Domb, M. S. Green (Academic Press, London 1972), vol. 2.
  • [10] R. J. Glauber, J. Phys. 4, 294 (1963)
  • [11] T. Tomé, M. J. de Oliveira, Phys. Rev. A 40, 6643 (1989) http://dx.doi.org/10.1103/PhysRevA.40.6643[Crossref]
  • [12] S. Bekhechi, A. Benyoussef, B. Ettaki, M. Loulidi, A. El Kenz, F. Hontinfinde, Phys. Rev. E 64, 016134 (2001) http://dx.doi.org/10.1103/PhysRevE.64.016134[Crossref]
  • [13] J. Ashkin, E. Teller, Phys. Rev. 64, 178 (1943) http://dx.doi.org/10.1103/PhysRev.64.178[Crossref]
  • [14] A. B. Bortz, M. H. Kalos, J. L. Lebowitz, J. Comput. Phys. 17, 10 (1975) http://dx.doi.org/10.1016/0021-9991(75)90060-1[Crossref]
  • [15] M. Blume, V. J. Emery, R. B. Griffiths, Phys. Rev. A 4, 1071 (1971) http://dx.doi.org/10.1103/PhysRevA.4.1071[Crossref]
  • [16] T. D. Oke, F. Hontinfinde, K. Boukheddaden, Eur. Phys. J. B 86, 271 (2013) http://dx.doi.org/10.1140/epjb/e2013-30801-5[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-014-0446-y
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.